CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
A use-after-free flaw was found in X.Org and Xwayland. When changing an alarm, the values of the change mask are evaluated one after the other, changing the trigger values as requested, and eventually, SyncInitTrigger() is called. If one of the changes triggers an error, the function will return early, not adding the new sync object, possibly causing a use-after-free when the alarm eventually triggers. |
A use-after-free flaw was found in X.Org and Xwayland. When a device is removed while still frozen, the events queued for that device remain while the device is freed. Replaying the events will cause a use-after-free. |
An out-of-bounds write flaw was found in X.Org and Xwayland. The function GetBarrierDevice() searches for the pointer device based on its device ID and returns the matching value, or supposedly NULL, if no match was found. However, the code will return the last element of the list if no matching device ID is found, which can lead to out-of-bounds memory access. |
An access to an uninitialized pointer flaw was found in X.Org and Xwayland. The function compCheckRedirect() may fail if it cannot allocate the backing pixmap. In that case, compRedirectWindow() will return a BadAlloc error without validating the window tree marked just before, which leaves the validated data partly initialized and the use of an uninitialized pointer later. |
A buffer overflow flaw was found in X.Org and Xwayland. If XkbChangeTypesOfKey() is called with a 0 group, it will resize the key symbols table to 0 but leave the key actions unchanged. If the same function is later called with a non-zero value of groups, this will cause a buffer overflow because the key actions are of the wrong size. |
A heap overflow flaw was found in X.Org and Xwayland. The computation of the length in XkbSizeKeySyms() differs from what is written in XkbWriteKeySyms(), which may lead to a heap-based buffer overflow. |
A buffer overflow flaw was found in X.Org and Xwayland. The code in XkbVModMaskText() allocates a fixed-sized buffer on the stack and copies the names of the virtual modifiers to that buffer. The code fails to check the bounds of the buffer and would copy the data regardless of the size. |
A use-after-free flaw was found in X.Org and Xwayland. The root cursor is referenced in the X server as a global variable. If a client frees the root cursor, the internal reference points to freed memory and causes a use-after-free. |
A flaw was found in grub2. During the network boot process, when trying to search for the configuration file, grub copies data from a user controlled environment variable into an internal buffer using the grub_strcpy() function. During this step, it fails to consider the environment variable length when allocating the internal buffer, resulting in an out-of-bounds write. If correctly exploited, this issue may result in remote code execution through the same network segment grub is searching for the boot information, which can be used to by-pass secure boot protections. |
A vulnerability was identified in Docker Desktop that allows local running Linux containers to access the Docker Engine API via the configured Docker subnet, at 192.168.65.7:2375 by default. This vulnerability occurs with or without Enhanced Container Isolation (ECI) enabled, and with or without the "Expose daemon on tcp://localhost:2375 without TLS" option enabled.
This can lead to execution of a wide range of privileged commands to the engine API, including controlling other containers, creating new ones, managing images etc. In some circumstances (e.g. Docker Desktop for Windows with WSL backend) it also allows mounting the host drive with the same privileges as the user running Docker Desktop. |
Suricata is a network Intrusion Detection System, Intrusion Prevention System and Network Security Monitoring engine. Prior to version 7.0.7, invalid ALPN in TLS/QUIC traffic when JA4 matching/logging is enabled can lead to Suricata aborting with a panic. This issue has been addressed in 7.0.7. One may disable ja4 as a workaround. |
XWiki Platform is a generic wiki platform. Starting in version 2.4-milestone-1 and prior to versions 4.10.20, 15.5.4, and 15.10-rc-1, XWiki's database search allows remote code execution through the search text. This allows remote code execution for any visitor of a public wiki or user of a closed wiki as the database search is by default accessible for all users. This impacts the confidentiality, integrity and availability of the whole XWiki installation. This vulnerability has been patched in XWiki 14.10.20, 15.5.4 and 15.10RC1. As a workaround, one may manually apply the patch to the page `Main.DatabaseSearch`. Alternatively, unless database search is explicitly used by users, this page can be deleted as this is not the default search interface of XWiki. |
Exposed IOCTL with Insufficient Access Control in Phoenix WinFlash Driver on Windows allows Privilege Escalation which allows for modification of system firmware.This issue affects WinFlash Driver: before 4.5.0.0. |
A vulnerability was found in Ruby. The Ruby interpreter is vulnerable to the Marvin Attack. This attack allows the attacker to decrypt previously encrypted messages or forge signatures by exchanging a large number of messages with the vulnerable service. |
In the Linux kernel, the following vulnerability has been resolved:
net: use a bounce buffer for copying skb->mark
syzbot found arm64 builds would crash in sock_recv_mark()
when CONFIG_HARDENED_USERCOPY=y
x86 and powerpc are not detecting the issue because
they define user_access_begin.
This will be handled in a different patch,
because a check_object_size() is missing.
Only data from skb->cb[] can be copied directly to/from user space,
as explained in commit 79a8a642bf05 ("net: Whitelist
the skbuff_head_cache "cb" field")
syzbot report was:
usercopy: Kernel memory exposure attempt detected from SLUB object 'skbuff_head_cache' (offset 168, size 4)!
------------[ cut here ]------------
kernel BUG at mm/usercopy.c:102 !
Internal error: Oops - BUG: 00000000f2000800 [#1] PREEMPT SMP
Modules linked in:
CPU: 0 PID: 4410 Comm: syz-executor533 Not tainted 6.2.0-rc7-syzkaller-17907-g2d3827b3f393 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/21/2023
pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : usercopy_abort+0x90/0x94 mm/usercopy.c:90
lr : usercopy_abort+0x90/0x94 mm/usercopy.c:90
sp : ffff80000fb9b9a0
x29: ffff80000fb9b9b0 x28: ffff0000c6073400 x27: 0000000020001a00
x26: 0000000000000014 x25: ffff80000cf52000 x24: fffffc0000000000
x23: 05ffc00000000200 x22: fffffc000324bf80 x21: ffff0000c92fe1a8
x20: 0000000000000001 x19: 0000000000000004 x18: 0000000000000000
x17: 656a626f2042554c x16: ffff0000c6073dd0 x15: ffff80000dbd2118
x14: ffff0000c6073400 x13: 00000000ffffffff x12: ffff0000c6073400
x11: ff808000081bbb4c x10: 0000000000000000 x9 : 7b0572d7cc0ccf00
x8 : 7b0572d7cc0ccf00 x7 : ffff80000bf650d4 x6 : 0000000000000000
x5 : 0000000000000001 x4 : 0000000000000001 x3 : 0000000000000000
x2 : ffff0001fefbff08 x1 : 0000000100000000 x0 : 000000000000006c
Call trace:
usercopy_abort+0x90/0x94 mm/usercopy.c:90
__check_heap_object+0xa8/0x100 mm/slub.c:4761
check_heap_object mm/usercopy.c:196 [inline]
__check_object_size+0x208/0x6b8 mm/usercopy.c:251
check_object_size include/linux/thread_info.h:199 [inline]
__copy_to_user include/linux/uaccess.h:115 [inline]
put_cmsg+0x408/0x464 net/core/scm.c:238
sock_recv_mark net/socket.c:975 [inline]
__sock_recv_cmsgs+0x1fc/0x248 net/socket.c:984
sock_recv_cmsgs include/net/sock.h:2728 [inline]
packet_recvmsg+0x2d8/0x678 net/packet/af_packet.c:3482
____sys_recvmsg+0x110/0x3a0
___sys_recvmsg net/socket.c:2737 [inline]
__sys_recvmsg+0x194/0x210 net/socket.c:2767
__do_sys_recvmsg net/socket.c:2777 [inline]
__se_sys_recvmsg net/socket.c:2774 [inline]
__arm64_sys_recvmsg+0x2c/0x3c net/socket.c:2774
__invoke_syscall arch/arm64/kernel/syscall.c:38 [inline]
invoke_syscall+0x64/0x178 arch/arm64/kernel/syscall.c:52
el0_svc_common+0xbc/0x180 arch/arm64/kernel/syscall.c:142
do_el0_svc+0x48/0x110 arch/arm64/kernel/syscall.c:193
el0_svc+0x58/0x14c arch/arm64/kernel/entry-common.c:637
el0t_64_sync_handler+0x84/0xf0 arch/arm64/kernel/entry-common.c:655
el0t_64_sync+0x190/0x194 arch/arm64/kernel/entry.S:591
Code: 91388800 aa0903e1 f90003e8 94e6d752 (d4210000) |
In the Linux kernel, the following vulnerability has been resolved:
freezer,umh: Fix call_usermode_helper_exec() vs SIGKILL
Tetsuo-San noted that commit f5d39b020809 ("freezer,sched: Rewrite
core freezer logic") broke call_usermodehelper_exec() for the KILLABLE
case.
Specifically it was missed that the second, unconditional,
wait_for_completion() was not optional and ensures the on-stack
completion is unused before going out-of-scope. |
In the Linux kernel, the following vulnerability has been resolved:
ceph: blocklist the kclient when receiving corrupted snap trace
When received corrupted snap trace we don't know what exactly has
happened in MDS side. And we shouldn't continue IOs and metadatas
access to MDS, which may corrupt or get incorrect contents.
This patch will just block all the further IO/MDS requests
immediately and then evict the kclient itself.
The reason why we still need to evict the kclient just after
blocking all the further IOs is that the MDS could revoke the caps
faster. |
In the Linux kernel, the following vulnerability has been resolved:
net: USB: Fix wrong-direction WARNING in plusb.c
The syzbot fuzzer detected a bug in the plusb network driver: A
zero-length control-OUT transfer was treated as a read instead of a
write. In modern kernels this error provokes a WARNING:
usb 1-1: BOGUS control dir, pipe 80000280 doesn't match bRequestType c0
WARNING: CPU: 0 PID: 4645 at drivers/usb/core/urb.c:411
usb_submit_urb+0x14a7/0x1880 drivers/usb/core/urb.c:411
Modules linked in:
CPU: 1 PID: 4645 Comm: dhcpcd Not tainted
6.2.0-rc6-syzkaller-00050-g9f266ccaa2f5 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google
01/12/2023
RIP: 0010:usb_submit_urb+0x14a7/0x1880 drivers/usb/core/urb.c:411
...
Call Trace:
<TASK>
usb_start_wait_urb+0x101/0x4b0 drivers/usb/core/message.c:58
usb_internal_control_msg drivers/usb/core/message.c:102 [inline]
usb_control_msg+0x320/0x4a0 drivers/usb/core/message.c:153
__usbnet_read_cmd+0xb9/0x390 drivers/net/usb/usbnet.c:2010
usbnet_read_cmd+0x96/0xf0 drivers/net/usb/usbnet.c:2068
pl_vendor_req drivers/net/usb/plusb.c:60 [inline]
pl_set_QuickLink_features drivers/net/usb/plusb.c:75 [inline]
pl_reset+0x2f/0xf0 drivers/net/usb/plusb.c:85
usbnet_open+0xcc/0x5d0 drivers/net/usb/usbnet.c:889
__dev_open+0x297/0x4d0 net/core/dev.c:1417
__dev_change_flags+0x587/0x750 net/core/dev.c:8530
dev_change_flags+0x97/0x170 net/core/dev.c:8602
devinet_ioctl+0x15a2/0x1d70 net/ipv4/devinet.c:1147
inet_ioctl+0x33f/0x380 net/ipv4/af_inet.c:979
sock_do_ioctl+0xcc/0x230 net/socket.c:1169
sock_ioctl+0x1f8/0x680 net/socket.c:1286
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:870 [inline]
__se_sys_ioctl fs/ioctl.c:856 [inline]
__x64_sys_ioctl+0x197/0x210 fs/ioctl.c:856
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x39/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
The fix is to call usbnet_write_cmd() instead of usbnet_read_cmd() and
remove the USB_DIR_IN flag. |
In the Linux kernel, the following vulnerability has been resolved:
ice: Do not use WQ_MEM_RECLAIM flag for workqueue
When both ice and the irdma driver are loaded, a warning in
check_flush_dependency is being triggered. This is due to ice driver
workqueue being allocated with the WQ_MEM_RECLAIM flag and the irdma one
is not.
According to kernel documentation, this flag should be set if the
workqueue will be involved in the kernel's memory reclamation flow.
Since it is not, there is no need for the ice driver's WQ to have this
flag set so remove it.
Example trace:
[ +0.000004] workqueue: WQ_MEM_RECLAIM ice:ice_service_task [ice] is flushing !WQ_MEM_RECLAIM infiniband:0x0
[ +0.000139] WARNING: CPU: 0 PID: 728 at kernel/workqueue.c:2632 check_flush_dependency+0x178/0x1a0
[ +0.000011] Modules linked in: bonding tls xt_CHECKSUM xt_MASQUERADE xt_conntrack ipt_REJECT nf_reject_ipv4 nft_compat nft_cha
in_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 nf_tables nfnetlink bridge stp llc rfkill vfat fat intel_rapl_msr intel
_rapl_common isst_if_common skx_edac nfit libnvdimm x86_pkg_temp_thermal intel_powerclamp coretemp kvm_intel kvm irqbypass crct1
0dif_pclmul crc32_pclmul ghash_clmulni_intel rapl intel_cstate rpcrdma sunrpc rdma_ucm ib_srpt ib_isert iscsi_target_mod target_
core_mod ib_iser libiscsi scsi_transport_iscsi rdma_cm ib_cm iw_cm iTCO_wdt iTCO_vendor_support ipmi_ssif irdma mei_me ib_uverbs
ib_core intel_uncore joydev pcspkr i2c_i801 acpi_ipmi mei lpc_ich i2c_smbus intel_pch_thermal ioatdma ipmi_si acpi_power_meter
acpi_pad xfs libcrc32c sd_mod t10_pi crc64_rocksoft crc64 sg ahci ixgbe libahci ice i40e igb crc32c_intel mdio i2c_algo_bit liba
ta dca wmi dm_mirror dm_region_hash dm_log dm_mod ipmi_devintf ipmi_msghandler fuse
[ +0.000161] [last unloaded: bonding]
[ +0.000006] CPU: 0 PID: 728 Comm: kworker/0:2 Tainted: G S 6.2.0-rc2_next-queue-13jan-00458-gc20aabd57164 #1
[ +0.000006] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.02.01.0010.010620200716 01/06/2020
[ +0.000003] Workqueue: ice ice_service_task [ice]
[ +0.000127] RIP: 0010:check_flush_dependency+0x178/0x1a0
[ +0.000005] Code: 89 8e 02 01 e8 49 3d 40 00 49 8b 55 18 48 8d 8d d0 00 00 00 48 8d b3 d0 00 00 00 4d 89 e0 48 c7 c7 e0 3b 08
9f e8 bb d3 07 01 <0f> 0b e9 be fe ff ff 80 3d 24 89 8e 02 00 0f 85 6b ff ff ff e9 06
[ +0.000004] RSP: 0018:ffff88810a39f990 EFLAGS: 00010282
[ +0.000005] RAX: 0000000000000000 RBX: ffff888141bc2400 RCX: 0000000000000000
[ +0.000004] RDX: 0000000000000001 RSI: dffffc0000000000 RDI: ffffffffa1213a80
[ +0.000003] RBP: ffff888194bf3400 R08: ffffed117b306112 R09: ffffed117b306112
[ +0.000003] R10: ffff888bd983088b R11: ffffed117b306111 R12: 0000000000000000
[ +0.000003] R13: ffff888111f84d00 R14: ffff88810a3943ac R15: ffff888194bf3400
[ +0.000004] FS: 0000000000000000(0000) GS:ffff888bd9800000(0000) knlGS:0000000000000000
[ +0.000003] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ +0.000003] CR2: 000056035b208b60 CR3: 000000017795e005 CR4: 00000000007706f0
[ +0.000003] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ +0.000003] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ +0.000002] PKRU: 55555554
[ +0.000003] Call Trace:
[ +0.000002] <TASK>
[ +0.000003] __flush_workqueue+0x203/0x840
[ +0.000006] ? mutex_unlock+0x84/0xd0
[ +0.000008] ? __pfx_mutex_unlock+0x10/0x10
[ +0.000004] ? __pfx___flush_workqueue+0x10/0x10
[ +0.000006] ? mutex_lock+0xa3/0xf0
[ +0.000005] ib_cache_cleanup_one+0x39/0x190 [ib_core]
[ +0.000174] __ib_unregister_device+0x84/0xf0 [ib_core]
[ +0.000094] ib_unregister_device+0x25/0x30 [ib_core]
[ +0.000093] irdma_ib_unregister_device+0x97/0xc0 [irdma]
[ +0.000064] ? __pfx_irdma_ib_unregister_device+0x10/0x10 [irdma]
[ +0.000059] ? up_write+0x5c/0x90
[ +0.000005] irdma_remove+0x36/0x90 [irdma]
[ +0.000062] auxiliary_bus_remove+0x32/0x50
[ +0.000007] device_r
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
arm64: Restrict CPU_BIG_ENDIAN to GNU as or LLVM IAS 15.x or newer
Prior to LLVM 15.0.0, LLVM's integrated assembler would incorrectly
byte-swap NOP when compiling for big-endian, and the resulting series of
bytes happened to match the encoding of FNMADD S21, S30, S0, S0.
This went unnoticed until commit:
34f66c4c4d5518c1 ("arm64: Use a positive cpucap for FP/SIMD")
Prior to that commit, the kernel would always enable the use of FPSIMD
early in boot when __cpu_setup() initialized CPACR_EL1, and so usage of
FNMADD within the kernel was not detected, but could result in the
corruption of user or kernel FPSIMD state.
After that commit, the instructions happen to trap during boot prior to
FPSIMD being detected and enabled, e.g.
| Unhandled 64-bit el1h sync exception on CPU0, ESR 0x000000001fe00000 -- ASIMD
| CPU: 0 PID: 0 Comm: swapper Not tainted 6.6.0-rc3-00013-g34f66c4c4d55 #1
| Hardware name: linux,dummy-virt (DT)
| pstate: 400000c9 (nZcv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
| pc : __pi_strcmp+0x1c/0x150
| lr : populate_properties+0xe4/0x254
| sp : ffffd014173d3ad0
| x29: ffffd014173d3af0 x28: fffffbfffddffcb8 x27: 0000000000000000
| x26: 0000000000000058 x25: fffffbfffddfe054 x24: 0000000000000008
| x23: fffffbfffddfe000 x22: fffffbfffddfe000 x21: fffffbfffddfe044
| x20: ffffd014173d3b70 x19: 0000000000000001 x18: 0000000000000005
| x17: 0000000000000010 x16: 0000000000000000 x15: 00000000413e7000
| x14: 0000000000000000 x13: 0000000000001bcc x12: 0000000000000000
| x11: 00000000d00dfeed x10: ffffd414193f2cd0 x9 : 0000000000000000
| x8 : 0101010101010101 x7 : ffffffffffffffc0 x6 : 0000000000000000
| x5 : 0000000000000000 x4 : 0101010101010101 x3 : 000000000000002a
| x2 : 0000000000000001 x1 : ffffd014171f2988 x0 : fffffbfffddffcb8
| Kernel panic - not syncing: Unhandled exception
| CPU: 0 PID: 0 Comm: swapper Not tainted 6.6.0-rc3-00013-g34f66c4c4d55 #1
| Hardware name: linux,dummy-virt (DT)
| Call trace:
| dump_backtrace+0xec/0x108
| show_stack+0x18/0x2c
| dump_stack_lvl+0x50/0x68
| dump_stack+0x18/0x24
| panic+0x13c/0x340
| el1t_64_irq_handler+0x0/0x1c
| el1_abort+0x0/0x5c
| el1h_64_sync+0x64/0x68
| __pi_strcmp+0x1c/0x150
| unflatten_dt_nodes+0x1e8/0x2d8
| __unflatten_device_tree+0x5c/0x15c
| unflatten_device_tree+0x38/0x50
| setup_arch+0x164/0x1e0
| start_kernel+0x64/0x38c
| __primary_switched+0xbc/0xc4
Restrict CONFIG_CPU_BIG_ENDIAN to a known good assembler, which is
either GNU as or LLVM's IAS 15.0.0 and newer, which contains the linked
commit. |