| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to truncate preallocated blocks in f2fs_file_open()
chenyuwen reports a f2fs bug as below:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000011
fscrypt_set_bio_crypt_ctx+0x78/0x1e8
f2fs_grab_read_bio+0x78/0x208
f2fs_submit_page_read+0x44/0x154
f2fs_get_read_data_page+0x288/0x5f4
f2fs_get_lock_data_page+0x60/0x190
truncate_partial_data_page+0x108/0x4fc
f2fs_do_truncate_blocks+0x344/0x5f0
f2fs_truncate_blocks+0x6c/0x134
f2fs_truncate+0xd8/0x200
f2fs_iget+0x20c/0x5ac
do_garbage_collect+0x5d0/0xf6c
f2fs_gc+0x22c/0x6a4
f2fs_disable_checkpoint+0xc8/0x310
f2fs_fill_super+0x14bc/0x1764
mount_bdev+0x1b4/0x21c
f2fs_mount+0x20/0x30
legacy_get_tree+0x50/0xbc
vfs_get_tree+0x5c/0x1b0
do_new_mount+0x298/0x4cc
path_mount+0x33c/0x5fc
__arm64_sys_mount+0xcc/0x15c
invoke_syscall+0x60/0x150
el0_svc_common+0xb8/0xf8
do_el0_svc+0x28/0xa0
el0_svc+0x24/0x84
el0t_64_sync_handler+0x88/0xec
It is because inode.i_crypt_info is not initialized during below path:
- mount
- f2fs_fill_super
- f2fs_disable_checkpoint
- f2fs_gc
- f2fs_iget
- f2fs_truncate
So, let's relocate truncation of preallocated blocks to f2fs_file_open(),
after fscrypt_file_open(). |
| In the Linux kernel, the following vulnerability has been resolved:
jfs: Fix array-index-out-of-bounds in diFree |
| In the Linux kernel, the following vulnerability has been resolved:
dma: fix call order in dmam_free_coherent
dmam_free_coherent() frees a DMA allocation, which makes the
freed vaddr available for reuse, then calls devres_destroy()
to remove and free the data structure used to track the DMA
allocation. Between the two calls, it is possible for a
concurrent task to make an allocation with the same vaddr
and add it to the devres list.
If this happens, there will be two entries in the devres list
with the same vaddr and devres_destroy() can free the wrong
entry, triggering the WARN_ON() in dmam_match.
Fix by destroying the devres entry before freeing the DMA
allocation.
kokonut //net/encryption
http://sponge2/b9145fe6-0f72-4325-ac2f-a84d81075b03 |
| In the Linux kernel, the following vulnerability has been resolved:
md: fix deadlock between mddev_suspend and flush bio
Deadlock occurs when mddev is being suspended while some flush bio is in
progress. It is a complex issue.
T1. the first flush is at the ending stage, it clears 'mddev->flush_bio'
and tries to submit data, but is blocked because mddev is suspended
by T4.
T2. the second flush sets 'mddev->flush_bio', and attempts to queue
md_submit_flush_data(), which is already running (T1) and won't
execute again if on the same CPU as T1.
T3. the third flush inc active_io and tries to flush, but is blocked because
'mddev->flush_bio' is not NULL (set by T2).
T4. mddev_suspend() is called and waits for active_io dec to 0 which is inc
by T3.
T1 T2 T3 T4
(flush 1) (flush 2) (third 3) (suspend)
md_submit_flush_data
mddev->flush_bio = NULL;
.
. md_flush_request
. mddev->flush_bio = bio
. queue submit_flushes
. .
. . md_handle_request
. . active_io + 1
. . md_flush_request
. . wait !mddev->flush_bio
. .
. . mddev_suspend
. . wait !active_io
. .
. submit_flushes
. queue_work md_submit_flush_data
. //md_submit_flush_data is already running (T1)
.
md_handle_request
wait resume
The root issue is non-atomic inc/dec of active_io during flush process.
active_io is dec before md_submit_flush_data is queued, and inc soon
after md_submit_flush_data() run.
md_flush_request
active_io + 1
submit_flushes
active_io - 1
md_submit_flush_data
md_handle_request
active_io + 1
make_request
active_io - 1
If active_io is dec after md_handle_request() instead of within
submit_flushes(), make_request() can be called directly intead of
md_handle_request() in md_submit_flush_data(), and active_io will
only inc and dec once in the whole flush process. Deadlock will be
fixed.
Additionally, the only difference between fixing the issue and before is
that there is no return error handling of make_request(). But after
previous patch cleaned md_write_start(), make_requst() only return error
in raid5_make_request() by dm-raid, see commit 41425f96d7aa ("dm-raid456,
md/raid456: fix a deadlock for dm-raid456 while io concurrent with
reshape)". Since dm always splits data and flush operation into two
separate io, io size of flush submitted by dm always is 0, make_request()
will not be called in md_submit_flush_data(). To prevent future
modifications from introducing issues, add WARN_ON to ensure
make_request() no error is returned in this context. |
| In the Linux kernel, the following vulnerability has been resolved:
block: initialize integrity buffer to zero before writing it to media
Metadata added by bio_integrity_prep is using plain kmalloc, which leads
to random kernel memory being written media. For PI metadata this is
limited to the app tag that isn't used by kernel generated metadata,
but for non-PI metadata the entire buffer leaks kernel memory.
Fix this by adding the __GFP_ZERO flag to allocations for writes. |
| In the Linux kernel, the following vulnerability has been resolved:
cgroup/cpuset: Prevent UAF in proc_cpuset_show()
An UAF can happen when /proc/cpuset is read as reported in [1].
This can be reproduced by the following methods:
1.add an mdelay(1000) before acquiring the cgroup_lock In the
cgroup_path_ns function.
2.$cat /proc/<pid>/cpuset repeatly.
3.$mount -t cgroup -o cpuset cpuset /sys/fs/cgroup/cpuset/
$umount /sys/fs/cgroup/cpuset/ repeatly.
The race that cause this bug can be shown as below:
(umount) | (cat /proc/<pid>/cpuset)
css_release | proc_cpuset_show
css_release_work_fn | css = task_get_css(tsk, cpuset_cgrp_id);
css_free_rwork_fn | cgroup_path_ns(css->cgroup, ...);
cgroup_destroy_root | mutex_lock(&cgroup_mutex);
rebind_subsystems |
cgroup_free_root |
| // cgrp was freed, UAF
| cgroup_path_ns_locked(cgrp,..);
When the cpuset is initialized, the root node top_cpuset.css.cgrp
will point to &cgrp_dfl_root.cgrp. In cgroup v1, the mount operation will
allocate cgroup_root, and top_cpuset.css.cgrp will point to the allocated
&cgroup_root.cgrp. When the umount operation is executed,
top_cpuset.css.cgrp will be rebound to &cgrp_dfl_root.cgrp.
The problem is that when rebinding to cgrp_dfl_root, there are cases
where the cgroup_root allocated by setting up the root for cgroup v1
is cached. This could lead to a Use-After-Free (UAF) if it is
subsequently freed. The descendant cgroups of cgroup v1 can only be
freed after the css is released. However, the css of the root will never
be released, yet the cgroup_root should be freed when it is unmounted.
This means that obtaining a reference to the css of the root does
not guarantee that css.cgrp->root will not be freed.
Fix this problem by using rcu_read_lock in proc_cpuset_show().
As cgroup_root is kfree_rcu after commit d23b5c577715
("cgroup: Make operations on the cgroup root_list RCU safe"),
css->cgroup won't be freed during the critical section.
To call cgroup_path_ns_locked, css_set_lock is needed, so it is safe to
replace task_get_css with task_css.
[1] https://syzkaller.appspot.com/bug?extid=9b1ff7be974a403aa4cd |
| In the Linux kernel, the following vulnerability has been resolved:
soc: xilinx: rename cpu_number1 to dummy_cpu_number
The per cpu variable cpu_number1 is passed to xlnx_event_handler as
argument "dev_id", but it is not used in this function. So drop the
initialization of this variable and rename it to dummy_cpu_number.
This patch is to fix the following call trace when the kernel option
CONFIG_DEBUG_ATOMIC_SLEEP is enabled:
BUG: sleeping function called from invalid context at include/linux/sched/mm.h:274
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 1, name: swapper/0
preempt_count: 1, expected: 0
CPU: 0 PID: 1 Comm: swapper/0 Not tainted 6.1.0 #53
Hardware name: Xilinx Versal vmk180 Eval board rev1.1 (QSPI) (DT)
Call trace:
dump_backtrace+0xd0/0xe0
show_stack+0x18/0x40
dump_stack_lvl+0x7c/0xa0
dump_stack+0x18/0x34
__might_resched+0x10c/0x140
__might_sleep+0x4c/0xa0
__kmem_cache_alloc_node+0xf4/0x168
kmalloc_trace+0x28/0x38
__request_percpu_irq+0x74/0x138
xlnx_event_manager_probe+0xf8/0x298
platform_probe+0x68/0xd8 |
| In the Linux kernel, the following vulnerability has been resolved:
soc: qcom: pdr: protect locator_addr with the main mutex
If the service locator server is restarted fast enough, the PDR can
rewrite locator_addr fields concurrently. Protect them by placing
modification of those fields under the main pdr->lock. |
| In the Linux kernel, the following vulnerability has been resolved:
lib: objagg: Fix general protection fault
The library supports aggregation of objects into other objects only if
the parent object does not have a parent itself. That is, nesting is not
supported.
Aggregation happens in two cases: Without and with hints, where hints
are a pre-computed recommendation on how to aggregate the provided
objects.
Nesting is not possible in the first case due to a check that prevents
it, but in the second case there is no check because the assumption is
that nesting cannot happen when creating objects based on hints. The
violation of this assumption leads to various warnings and eventually to
a general protection fault [1].
Before fixing the root cause, error out when nesting happens and warn.
[1]
general protection fault, probably for non-canonical address 0xdead000000000d90: 0000 [#1] PREEMPT SMP PTI
CPU: 1 PID: 1083 Comm: kworker/1:9 Tainted: G W 6.9.0-rc6-custom-gd9b4f1cca7fb #7
Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019
Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work
RIP: 0010:mlxsw_sp_acl_erp_bf_insert+0x25/0x80
[...]
Call Trace:
<TASK>
mlxsw_sp_acl_atcam_entry_add+0x256/0x3c0
mlxsw_sp_acl_tcam_entry_create+0x5e/0xa0
mlxsw_sp_acl_tcam_vchunk_migrate_one+0x16b/0x270
mlxsw_sp_acl_tcam_vregion_rehash_work+0xbe/0x510
process_one_work+0x151/0x370
worker_thread+0x2cb/0x3e0
kthread+0xd0/0x100
ret_from_fork+0x34/0x50
ret_from_fork_asm+0x1a/0x30
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw89: Fix array index mistake in rtw89_sta_info_get_iter()
In rtw89_sta_info_get_iter() 'status->he_gi' is compared to array size.
But then 'rate->he_gi' is used as array index instead of 'status->he_gi'.
This can lead to go beyond array boundaries in case of 'rate->he_gi' is
not equal to 'status->he_gi' and is bigger than array size. Looks like
"copy-paste" mistake.
Fix this mistake by replacing 'rate->he_gi' with 'status->he_gi'.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: virt_wifi: avoid reporting connection success with wrong SSID
When user issues a connection with a different SSID than the one
virt_wifi has advertised, the __cfg80211_connect_result() will
trigger the warning: WARN_ON(bss_not_found).
The issue is because the connection code in virt_wifi does not
check the SSID from user space (it only checks the BSSID), and
virt_wifi will call cfg80211_connect_result() with WLAN_STATUS_SUCCESS
even if the SSID is different from the one virt_wifi has advertised.
Eventually cfg80211 won't be able to find the cfg80211_bss and generate
the warning.
Fixed it by checking the SSID (from user space) in the connection code. |
| In the Linux kernel, the following vulnerability has been resolved:
bna: adjust 'name' buf size of bna_tcb and bna_ccb structures
To have enough space to write all possible sprintf() args. Currently
'name' size is 16, but the first '%s' specifier may already need at
least 16 characters, since 'bnad->netdev->name' is used there.
For '%d' specifiers, assume that they require:
* 1 char for 'tx_id + tx_info->tcb[i]->id' sum, BNAD_MAX_TXQ_PER_TX is 8
* 2 chars for 'rx_id + rx_info->rx_ctrl[i].ccb->id', BNAD_MAX_RXP_PER_RX
is 16
And replace sprintf with snprintf.
Detected using the static analysis tool - Svace. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix null pointer dereference in resolve_prog_type() for BPF_PROG_TYPE_EXT
When loading a EXT program without specifying `attr->attach_prog_fd`,
the `prog->aux->dst_prog` will be null. At this time, calling
resolve_prog_type() anywhere will result in a null pointer dereference.
Example stack trace:
[ 8.107863] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000004
[ 8.108262] Mem abort info:
[ 8.108384] ESR = 0x0000000096000004
[ 8.108547] EC = 0x25: DABT (current EL), IL = 32 bits
[ 8.108722] SET = 0, FnV = 0
[ 8.108827] EA = 0, S1PTW = 0
[ 8.108939] FSC = 0x04: level 0 translation fault
[ 8.109102] Data abort info:
[ 8.109203] ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000
[ 8.109399] CM = 0, WnR = 0, TnD = 0, TagAccess = 0
[ 8.109614] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
[ 8.109836] user pgtable: 4k pages, 48-bit VAs, pgdp=0000000101354000
[ 8.110011] [0000000000000004] pgd=0000000000000000, p4d=0000000000000000
[ 8.112624] Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP
[ 8.112783] Modules linked in:
[ 8.113120] CPU: 0 PID: 99 Comm: may_access_dire Not tainted 6.10.0-rc3-next-20240613-dirty #1
[ 8.113230] Hardware name: linux,dummy-virt (DT)
[ 8.113390] pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 8.113429] pc : may_access_direct_pkt_data+0x24/0xa0
[ 8.113746] lr : add_subprog_and_kfunc+0x634/0x8e8
[ 8.113798] sp : ffff80008283b9f0
[ 8.113813] x29: ffff80008283b9f0 x28: ffff800082795048 x27: 0000000000000001
[ 8.113881] x26: ffff0000c0bb2600 x25: 0000000000000000 x24: 0000000000000000
[ 8.113897] x23: ffff0000c1134000 x22: 000000000001864f x21: ffff0000c1138000
[ 8.113912] x20: 0000000000000001 x19: ffff0000c12b8000 x18: ffffffffffffffff
[ 8.113929] x17: 0000000000000000 x16: 0000000000000000 x15: 0720072007200720
[ 8.113944] x14: 0720072007200720 x13: 0720072007200720 x12: 0720072007200720
[ 8.113958] x11: 0720072007200720 x10: 0000000000f9fca4 x9 : ffff80008021f4e4
[ 8.113991] x8 : 0101010101010101 x7 : 746f72705f6d656d x6 : 000000001e0e0f5f
[ 8.114006] x5 : 000000000001864f x4 : ffff0000c12b8000 x3 : 000000000000001c
[ 8.114020] x2 : 0000000000000002 x1 : 0000000000000000 x0 : 0000000000000000
[ 8.114126] Call trace:
[ 8.114159] may_access_direct_pkt_data+0x24/0xa0
[ 8.114202] bpf_check+0x3bc/0x28c0
[ 8.114214] bpf_prog_load+0x658/0xa58
[ 8.114227] __sys_bpf+0xc50/0x2250
[ 8.114240] __arm64_sys_bpf+0x28/0x40
[ 8.114254] invoke_syscall.constprop.0+0x54/0xf0
[ 8.114273] do_el0_svc+0x4c/0xd8
[ 8.114289] el0_svc+0x3c/0x140
[ 8.114305] el0t_64_sync_handler+0x134/0x150
[ 8.114331] el0t_64_sync+0x168/0x170
[ 8.114477] Code: 7100707f 54000081 f9401c00 f9403800 (b9400403)
[ 8.118672] ---[ end trace 0000000000000000 ]---
One way to fix it is by forcing `attach_prog_fd` non-empty when
bpf_prog_load(). But this will lead to `libbpf_probe_bpf_prog_type`
API broken which use verifier log to probe prog type and will log
nothing if we reject invalid EXT prog before bpf_check().
Another way is by adding null check in resolve_prog_type().
The issue was introduced by commit 4a9c7bbe2ed4 ("bpf: Resolve to
prog->aux->dst_prog->type only for BPF_PROG_TYPE_EXT") which wanted
to correct type resolution for BPF_PROG_TYPE_TRACING programs. Before
that, the type resolution of BPF_PROG_TYPE_EXT prog actually follows
the logic below:
prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
It implies that when EXT program is not yet attached to `dst_prog`,
the prog type should be EXT itself. This code worked fine in the past.
So just keep using it.
Fix this by returning `prog->type` for BPF_PROG_TYPE_EXT if `dst_prog`
is not present in resolve_prog_type(). |
| In the Linux kernel, the following vulnerability has been resolved:
virtio_net: Fix napi_skb_cache_put warning
After the commit bdacf3e34945 ("net: Use nested-BH locking for
napi_alloc_cache.") was merged, the following warning began to appear:
WARNING: CPU: 5 PID: 1 at net/core/skbuff.c:1451 napi_skb_cache_put+0x82/0x4b0
__warn+0x12f/0x340
napi_skb_cache_put+0x82/0x4b0
napi_skb_cache_put+0x82/0x4b0
report_bug+0x165/0x370
handle_bug+0x3d/0x80
exc_invalid_op+0x1a/0x50
asm_exc_invalid_op+0x1a/0x20
__free_old_xmit+0x1c8/0x510
napi_skb_cache_put+0x82/0x4b0
__free_old_xmit+0x1c8/0x510
__free_old_xmit+0x1c8/0x510
__pfx___free_old_xmit+0x10/0x10
The issue arises because virtio is assuming it's running in NAPI context
even when it's not, such as in the netpoll case.
To resolve this, modify virtnet_poll_tx() to only set NAPI when budget
is available. Same for virtnet_poll_cleantx(), which always assumed that
it was in a NAPI context. |
| In the Linux kernel, the following vulnerability has been resolved:
xdp: fix invalid wait context of page_pool_destroy()
If the driver uses a page pool, it creates a page pool with
page_pool_create().
The reference count of page pool is 1 as default.
A page pool will be destroyed only when a reference count reaches 0.
page_pool_destroy() is used to destroy page pool, it decreases a
reference count.
When a page pool is destroyed, ->disconnect() is called, which is
mem_allocator_disconnect().
This function internally acquires mutex_lock().
If the driver uses XDP, it registers a memory model with
xdp_rxq_info_reg_mem_model().
The xdp_rxq_info_reg_mem_model() internally increases a page pool
reference count if a memory model is a page pool.
Now the reference count is 2.
To destroy a page pool, the driver should call both page_pool_destroy()
and xdp_unreg_mem_model().
The xdp_unreg_mem_model() internally calls page_pool_destroy().
Only page_pool_destroy() decreases a reference count.
If a driver calls page_pool_destroy() then xdp_unreg_mem_model(), we
will face an invalid wait context warning.
Because xdp_unreg_mem_model() calls page_pool_destroy() with
rcu_read_lock().
The page_pool_destroy() internally acquires mutex_lock().
Splat looks like:
=============================
[ BUG: Invalid wait context ]
6.10.0-rc6+ #4 Tainted: G W
-----------------------------
ethtool/1806 is trying to lock:
ffffffff90387b90 (mem_id_lock){+.+.}-{4:4}, at: mem_allocator_disconnect+0x73/0x150
other info that might help us debug this:
context-{5:5}
3 locks held by ethtool/1806:
stack backtrace:
CPU: 0 PID: 1806 Comm: ethtool Tainted: G W 6.10.0-rc6+ #4 f916f41f172891c800f2fed
Hardware name: ASUS System Product Name/PRIME Z690-P D4, BIOS 0603 11/01/2021
Call Trace:
<TASK>
dump_stack_lvl+0x7e/0xc0
__lock_acquire+0x1681/0x4de0
? _printk+0x64/0xe0
? __pfx_mark_lock.part.0+0x10/0x10
? __pfx___lock_acquire+0x10/0x10
lock_acquire+0x1b3/0x580
? mem_allocator_disconnect+0x73/0x150
? __wake_up_klogd.part.0+0x16/0xc0
? __pfx_lock_acquire+0x10/0x10
? dump_stack_lvl+0x91/0xc0
__mutex_lock+0x15c/0x1690
? mem_allocator_disconnect+0x73/0x150
? __pfx_prb_read_valid+0x10/0x10
? mem_allocator_disconnect+0x73/0x150
? __pfx_llist_add_batch+0x10/0x10
? console_unlock+0x193/0x1b0
? lockdep_hardirqs_on+0xbe/0x140
? __pfx___mutex_lock+0x10/0x10
? tick_nohz_tick_stopped+0x16/0x90
? __irq_work_queue_local+0x1e5/0x330
? irq_work_queue+0x39/0x50
? __wake_up_klogd.part.0+0x79/0xc0
? mem_allocator_disconnect+0x73/0x150
mem_allocator_disconnect+0x73/0x150
? __pfx_mem_allocator_disconnect+0x10/0x10
? mark_held_locks+0xa5/0xf0
? rcu_is_watching+0x11/0xb0
page_pool_release+0x36e/0x6d0
page_pool_destroy+0xd7/0x440
xdp_unreg_mem_model+0x1a7/0x2a0
? __pfx_xdp_unreg_mem_model+0x10/0x10
? kfree+0x125/0x370
? bnxt_free_ring.isra.0+0x2eb/0x500
? bnxt_free_mem+0x5ac/0x2500
xdp_rxq_info_unreg+0x4a/0xd0
bnxt_free_mem+0x1356/0x2500
bnxt_close_nic+0xf0/0x3b0
? __pfx_bnxt_close_nic+0x10/0x10
? ethnl_parse_bit+0x2c6/0x6d0
? __pfx___nla_validate_parse+0x10/0x10
? __pfx_ethnl_parse_bit+0x10/0x10
bnxt_set_features+0x2a8/0x3e0
__netdev_update_features+0x4dc/0x1370
? ethnl_parse_bitset+0x4ff/0x750
? __pfx_ethnl_parse_bitset+0x10/0x10
? __pfx___netdev_update_features+0x10/0x10
? mark_held_locks+0xa5/0xf0
? _raw_spin_unlock_irqrestore+0x42/0x70
? __pm_runtime_resume+0x7d/0x110
ethnl_set_features+0x32d/0xa20
To fix this problem, it uses rhashtable_lookup_fast() instead of
rhashtable_lookup() with rcu_read_lock().
Using xa without rcu_read_lock() here is safe.
xa is freed by __xdp_mem_allocator_rcu_free() and this is called by
call_rcu() of mem_xa_remove().
The mem_xa_remove() is called by page_pool_destroy() if a reference
count reaches 0.
The xa is already protected by the reference count mechanism well in the
control plane.
So removing rcu_read_lock() for page_pool_destroy() is safe. |
| In the Linux kernel, the following vulnerability has been resolved:
media: v4l: async: Fix NULL pointer dereference in adding ancillary links
In v4l2_async_create_ancillary_links(), ancillary links are created for
lens and flash sub-devices. These are sub-device to sub-device links and
if the async notifier is related to a V4L2 device, the source sub-device
of the ancillary link is NULL, leading to a NULL pointer dereference.
Check the notifier's sd field is non-NULL in
v4l2_async_create_ancillary_links().
[Sakari Ailus: Reword the subject and commit messages slightly.] |
| In the Linux kernel, the following vulnerability has been resolved:
s390/uv: Don't call folio_wait_writeback() without a folio reference
folio_wait_writeback() requires that no spinlocks are held and that
a folio reference is held, as documented. After we dropped the PTL, the
folio could get freed concurrently. So grab a temporary reference. |
| In the Linux kernel, the following vulnerability has been resolved:
leds: trigger: Unregister sysfs attributes before calling deactivate()
Triggers which have trigger specific sysfs attributes typically store
related data in trigger-data allocated by the activate() callback and
freed by the deactivate() callback.
Calling device_remove_groups() after calling deactivate() leaves a window
where the sysfs attributes show/store functions could be called after
deactivation and then operate on the just freed trigger-data.
Move the device_remove_groups() call to before deactivate() to close
this race window.
This also makes the deactivation path properly do things in reverse order
of the activation path which calls the activate() callback before calling
device_add_groups(). |
| In the Linux kernel, the following vulnerability has been resolved:
drm/qxl: Add check for drm_cvt_mode
Add check for the return value of drm_cvt_mode() and return the error if
it fails in order to avoid NULL pointer dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix infinite loop when replaying fast_commit
When doing fast_commit replay an infinite loop may occur due to an
uninitialized extent_status struct. ext4_ext_determine_insert_hole() does
not detect the replay and calls ext4_es_find_extent_range(), which will
return immediately without initializing the 'es' variable.
Because 'es' contains garbage, an integer overflow may happen causing an
infinite loop in this function, easily reproducible using fstest generic/039.
This commit fixes this issue by unconditionally initializing the structure
in function ext4_es_find_extent_range().
Thanks to Zhang Yi, for figuring out the real problem! |