| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
usb: typec: tcpm: fix use-after-free case in tcpm_register_source_caps
There could be a potential use-after-free case in
tcpm_register_source_caps(). This could happen when:
* new (say invalid) source caps are advertised
* the existing source caps are unregistered
* tcpm_register_source_caps() returns with an error as
usb_power_delivery_register_capabilities() fails
This causes port->partner_source_caps to hold on to the now freed source
caps.
Reset port->partner_source_caps value to NULL after unregistering
existing source caps. |
| In the Linux kernel, the following vulnerability has been resolved:
jfs: xattr: fix buffer overflow for invalid xattr
When an xattr size is not what is expected, it is printed out to the
kernel log in hex format as a form of debugging. But when that xattr
size is bigger than the expected size, printing it out can cause an
access off the end of the buffer.
Fix this all up by properly restricting the size of the debug hex dump
in the kernel log. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: mpt3sas: Avoid test/set_bit() operating in non-allocated memory
There is a potential out-of-bounds access when using test_bit() on a single
word. The test_bit() and set_bit() functions operate on long values, and
when testing or setting a single word, they can exceed the word
boundary. KASAN detects this issue and produces a dump:
BUG: KASAN: slab-out-of-bounds in _scsih_add_device.constprop.0 (./arch/x86/include/asm/bitops.h:60 ./include/asm-generic/bitops/instrumented-atomic.h:29 drivers/scsi/mpt3sas/mpt3sas_scsih.c:7331) mpt3sas
Write of size 8 at addr ffff8881d26e3c60 by task kworker/u1536:2/2965
For full log, please look at [1].
Make the allocation at least the size of sizeof(unsigned long) so that
set_bit() and test_bit() have sufficient room for read/write operations
without overwriting unallocated memory.
[1] Link: https://lore.kernel.org/all/ZkNcALr3W3KGYYJG@gmail.com/ |
| In the Linux kernel, the following vulnerability has been resolved:
cachefiles: remove requests from xarray during flushing requests
Even with CACHEFILES_DEAD set, we can still read the requests, so in the
following concurrency the request may be used after it has been freed:
mount | daemon_thread1 | daemon_thread2
------------------------------------------------------------
cachefiles_ondemand_init_object
cachefiles_ondemand_send_req
REQ_A = kzalloc(sizeof(*req) + data_len)
wait_for_completion(&REQ_A->done)
cachefiles_daemon_read
cachefiles_ondemand_daemon_read
// close dev fd
cachefiles_flush_reqs
complete(&REQ_A->done)
kfree(REQ_A)
xa_lock(&cache->reqs);
cachefiles_ondemand_select_req
req->msg.opcode != CACHEFILES_OP_READ
// req use-after-free !!!
xa_unlock(&cache->reqs);
xa_destroy(&cache->reqs)
Hence remove requests from cache->reqs when flushing them to avoid
accessing freed requests. |
| In the Linux kernel, the following vulnerability has been resolved:
cachefiles: fix slab-use-after-free in cachefiles_ondemand_get_fd()
We got the following issue in a fuzz test of randomly issuing the restore
command:
==================================================================
BUG: KASAN: slab-use-after-free in cachefiles_ondemand_daemon_read+0x609/0xab0
Write of size 4 at addr ffff888109164a80 by task ondemand-04-dae/4962
CPU: 11 PID: 4962 Comm: ondemand-04-dae Not tainted 6.8.0-rc7-dirty #542
Call Trace:
kasan_report+0x94/0xc0
cachefiles_ondemand_daemon_read+0x609/0xab0
vfs_read+0x169/0xb50
ksys_read+0xf5/0x1e0
Allocated by task 626:
__kmalloc+0x1df/0x4b0
cachefiles_ondemand_send_req+0x24d/0x690
cachefiles_create_tmpfile+0x249/0xb30
cachefiles_create_file+0x6f/0x140
cachefiles_look_up_object+0x29c/0xa60
cachefiles_lookup_cookie+0x37d/0xca0
fscache_cookie_state_machine+0x43c/0x1230
[...]
Freed by task 626:
kfree+0xf1/0x2c0
cachefiles_ondemand_send_req+0x568/0x690
cachefiles_create_tmpfile+0x249/0xb30
cachefiles_create_file+0x6f/0x140
cachefiles_look_up_object+0x29c/0xa60
cachefiles_lookup_cookie+0x37d/0xca0
fscache_cookie_state_machine+0x43c/0x1230
[...]
==================================================================
Following is the process that triggers the issue:
mount | daemon_thread1 | daemon_thread2
------------------------------------------------------------
cachefiles_ondemand_init_object
cachefiles_ondemand_send_req
REQ_A = kzalloc(sizeof(*req) + data_len)
wait_for_completion(&REQ_A->done)
cachefiles_daemon_read
cachefiles_ondemand_daemon_read
REQ_A = cachefiles_ondemand_select_req
cachefiles_ondemand_get_fd
copy_to_user(_buffer, msg, n)
process_open_req(REQ_A)
------ restore ------
cachefiles_ondemand_restore
xas_for_each(&xas, req, ULONG_MAX)
xas_set_mark(&xas, CACHEFILES_REQ_NEW);
cachefiles_daemon_read
cachefiles_ondemand_daemon_read
REQ_A = cachefiles_ondemand_select_req
write(devfd, ("copen %u,%llu", msg->msg_id, size));
cachefiles_ondemand_copen
xa_erase(&cache->reqs, id)
complete(&REQ_A->done)
kfree(REQ_A)
cachefiles_ondemand_get_fd(REQ_A)
fd = get_unused_fd_flags
file = anon_inode_getfile
fd_install(fd, file)
load = (void *)REQ_A->msg.data;
load->fd = fd;
// load UAF !!!
This issue is caused by issuing a restore command when the daemon is still
alive, which results in a request being processed multiple times thus
triggering a UAF. So to avoid this problem, add an additional reference
count to cachefiles_req, which is held while waiting and reading, and then
released when the waiting and reading is over.
Note that since there is only one reference count for waiting, we need to
avoid the same request being completed multiple times, so we can only
complete the request if it is successfully removed from the xarray. |
| A custom URL scheme handling issue was addressed with improved input validation. This issue is fixed in iOS 18.1 and iPadOS 18.1. A remote attacker may be able to break out of Web Content sandbox. |
| The issue was addressed with improved checks. This issue is fixed in macOS Ventura 13.7.1, macOS Sequoia 15, macOS Sonoma 14.7.1. A sandboxed app may be able to access sensitive user data. |
| This issue was addressed by restricting options offered on a locked device. This issue is fixed in iOS 18.1 and iPadOS 18.1. An attacker with physical access may be able to access contact photos from the lock screen. |
| Multiple buffer overflow vulnerabilities exist in the qos.cgi qos_settings() functionality of Wavlink AC3000 M33A8.V5030.210505. A specially crafted HTTP request can lead to stack-based buffer overflow. An attacker can make an authenticated HTTP request to trigger these vulnerabilities.A buffer overflow vulnerability exists in the `sel_mode` POST parameter. |
| Multiple buffer overflow vulnerabilities exist in the qos.cgi qos_settings() functionality of Wavlink AC3000 M33A8.V5030.210505. A specially crafted HTTP request can lead to stack-based buffer overflow. An attacker can make an authenticated HTTP request to trigger these vulnerabilities.A buffer overflow vulnerability exists in the `qos_dat` POST parameter. |
| Multiple buffer overflow vulnerabilities exist in the qos.cgi qos_settings() functionality of Wavlink AC3000 M33A8.V5030.210505. A specially crafted HTTP request can lead to stack-based buffer overflow. An attacker can make an authenticated HTTP request to trigger these vulnerabilities.A buffer overflow vulnerability exists in the `qos_bandwidth` POST parameter. |
| Multiple external config control vulnerabilities exists in the openvpn.cgi openvpn_server_setup() functionality of Wavlink AC3000 M33A8.V5030.210505. A specially crafted HTTP request can lead to arbitrary command execution. An attacker can make an authenticated HTTP request to trigger these vulnerabilities.A configuration injection vulnerability exists in the `open_port` POST parameter. |
| Multiple external config control vulnerabilities exists in the openvpn.cgi openvpn_server_setup() functionality of Wavlink AC3000 M33A8.V5030.210505. A specially crafted HTTP request can lead to arbitrary command execution. An attacker can make an authenticated HTTP request to trigger these vulnerabilities.A configuration injection vulnerability exists in the `sel_open_interface` POST parameter. |
| Multiple external config control vulnerabilities exists in the openvpn.cgi openvpn_server_setup() functionality of Wavlink AC3000 M33A8.V5030.210505. A specially crafted HTTP request can lead to arbitrary command execution. An attacker can make an authenticated HTTP request to trigger these vulnerabilities.A configuration injection vulnerability exists in the `sel_open_protocol` POST parameter. |
| Multiple external config control vulnerabilities exist in the nas.cgi set_nas() proftpd functionality of Wavlink AC3000 M33A8.V5030.210505. A specially crafted HTTP request can lead to permission bypass. An attacker can make an authenticated HTTP request to trigger these vulnerabilities.A configuration injection vulnerability exists in the `ftp_max_sessions` POST parameter. |
| Multiple external config control vulnerabilities exist in the nas.cgi set_nas() proftpd functionality of Wavlink AC3000 M33A8.V5030.210505. A specially crafted HTTP request can lead to permission bypass. An attacker can make an authenticated HTTP request to trigger these vulnerabilities.A configuration injection vulnerability exists in the `ftp_port` POST parameter. |
| Multiple external config control vulnerabilities exist in the nas.cgi set_nas() proftpd functionality of Wavlink AC3000 M33A8.V5030.210505. A specially crafted HTTP request can lead to permission bypass. An attacker can make an authenticated HTTP request to trigger these vulnerabilities.A configuration injection vulnerability exists in the `ftp_name` POST parameter. |
| Multiple external config control vulnerabilities exist in the nas.cgi set_ftp_cfg() functionality of Wavlink AC3000 M33A8.V5030.210505. A specially crafted HTTP request can lead to permission bypass. An attacker can make an authenticated HTTP request to trigger these vulnerabilities.A configuration injection vulnerability exists within the `ftp_max_sessions` POST parameter. |
| Multiple external config control vulnerabilities exist in the nas.cgi set_ftp_cfg() functionality of Wavlink AC3000 M33A8.V5030.210505. A specially crafted HTTP request can lead to permission bypass. An attacker can make an authenticated HTTP request to trigger these vulnerabilities.A configuration injection vulnerability exists within the `ftp_port` POST parameter. |
| Multiple external config control vulnerabilities exist in the nas.cgi set_ftp_cfg() functionality of Wavlink AC3000 M33A8.V5030.210505. A specially crafted HTTP request can lead to permission bypass. An attacker can make an authenticated HTTP request to trigger these vulnerabilities.A configuration injection vulnerability exists within the `ftp_name` POST parameter. |