| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
clk: samsung: Fix UBSAN panic in samsung_clk_init()
With UBSAN_ARRAY_BOUNDS=y, I'm hitting the below panic due to
dereferencing `ctx->clk_data.hws` before setting
`ctx->clk_data.num = nr_clks`. Move that up to fix the crash.
UBSAN: array index out of bounds: 00000000f2005512 [#1] PREEMPT SMP
<snip>
Call trace:
samsung_clk_init+0x110/0x124 (P)
samsung_clk_init+0x48/0x124 (L)
samsung_cmu_register_one+0x3c/0xa0
exynos_arm64_register_cmu+0x54/0x64
__gs101_cmu_top_of_clk_init_declare+0x28/0x60
... |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: use aead_request_free to match aead_request_alloc
Use aead_request_free() instead of kfree() to properly free memory
allocated by aead_request_alloc(). This ensures sensitive crypto data
is zeroed before being freed. |
| In the Linux kernel, the following vulnerability has been resolved:
sch_hfsc: make hfsc_qlen_notify() idempotent
hfsc_qlen_notify() is not idempotent either and not friendly
to its callers, like fq_codel_dequeue(). Let's make it idempotent
to ease qdisc_tree_reduce_backlog() callers' life:
1. update_vf() decreases cl->cl_nactive, so we can check whether it is
non-zero before calling it.
2. eltree_remove() always removes RB node cl->el_node, but we can use
RB_EMPTY_NODE() + RB_CLEAR_NODE() to make it safe. |
| In the Linux kernel, the following vulnerability has been resolved:
remoteproc: core: Clear table_sz when rproc_shutdown
There is case as below could trigger kernel dump:
Use U-Boot to start remote processor(rproc) with resource table
published to a fixed address by rproc. After Kernel boots up,
stop the rproc, load a new firmware which doesn't have resource table
,and start rproc.
When starting rproc with a firmware not have resource table,
`memcpy(loaded_table, rproc->cached_table, rproc->table_sz)` will
trigger dump, because rproc->cache_table is set to NULL during the last
stop operation, but rproc->table_sz is still valid.
This issue is found on i.MX8MP and i.MX9.
Dump as below:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000
Mem abort info:
ESR = 0x0000000096000004
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x04: level 0 translation fault
Data abort info:
ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000
CM = 0, WnR = 0, TnD = 0, TagAccess = 0
GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
user pgtable: 4k pages, 48-bit VAs, pgdp=000000010af63000
[0000000000000000] pgd=0000000000000000, p4d=0000000000000000
Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP
Modules linked in:
CPU: 2 UID: 0 PID: 1060 Comm: sh Not tainted 6.14.0-rc7-next-20250317-dirty #38
Hardware name: NXP i.MX8MPlus EVK board (DT)
pstate: a0000005 (NzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : __pi_memcpy_generic+0x110/0x22c
lr : rproc_start+0x88/0x1e0
Call trace:
__pi_memcpy_generic+0x110/0x22c (P)
rproc_boot+0x198/0x57c
state_store+0x40/0x104
dev_attr_store+0x18/0x2c
sysfs_kf_write+0x7c/0x94
kernfs_fop_write_iter+0x120/0x1cc
vfs_write+0x240/0x378
ksys_write+0x70/0x108
__arm64_sys_write+0x1c/0x28
invoke_syscall+0x48/0x10c
el0_svc_common.constprop.0+0xc0/0xe0
do_el0_svc+0x1c/0x28
el0_svc+0x30/0xcc
el0t_64_sync_handler+0x10c/0x138
el0t_64_sync+0x198/0x19c
Clear rproc->table_sz to address the issue. |
| In the Linux kernel, the following vulnerability has been resolved:
regulator: max20086: fix invalid memory access
max20086_parse_regulators_dt() calls of_regulator_match() using an
array of struct of_regulator_match allocated on the stack for the
matches argument.
of_regulator_match() calls devm_of_regulator_put_matches(), which calls
devres_alloc() to allocate a struct devm_of_regulator_matches which will
be de-allocated using devm_of_regulator_put_matches().
struct devm_of_regulator_matches is populated with the stack allocated
matches array.
If the device fails to probe, devm_of_regulator_put_matches() will be
called and will try to call of_node_put() on that stack pointer,
generating the following dmesg entries:
max20086 6-0028: Failed to read DEVICE_ID reg: -121
kobject: '\xc0$\xa5\x03' (000000002cebcb7a): is not initialized, yet
kobject_put() is being called.
Followed by a stack trace matching the call flow described above.
Switch to allocating the matches array using devm_kcalloc() to
avoid accessing the stack pointer long after it's out of scope.
This also has the advantage of allowing multiple max20086 to probe
without overriding the data stored inside the global of_regulator_match. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/rxe: Fix slab-use-after-free Read in rxe_queue_cleanup bug
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x7d/0xa0 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0xcf/0x610 mm/kasan/report.c:489
kasan_report+0xb5/0xe0 mm/kasan/report.c:602
rxe_queue_cleanup+0xd0/0xe0 drivers/infiniband/sw/rxe/rxe_queue.c:195
rxe_cq_cleanup+0x3f/0x50 drivers/infiniband/sw/rxe/rxe_cq.c:132
__rxe_cleanup+0x168/0x300 drivers/infiniband/sw/rxe/rxe_pool.c:232
rxe_create_cq+0x22e/0x3a0 drivers/infiniband/sw/rxe/rxe_verbs.c:1109
create_cq+0x658/0xb90 drivers/infiniband/core/uverbs_cmd.c:1052
ib_uverbs_create_cq+0xc7/0x120 drivers/infiniband/core/uverbs_cmd.c:1095
ib_uverbs_write+0x969/0xc90 drivers/infiniband/core/uverbs_main.c:679
vfs_write fs/read_write.c:677 [inline]
vfs_write+0x26a/0xcc0 fs/read_write.c:659
ksys_write+0x1b8/0x200 fs/read_write.c:731
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xaa/0x1b0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
In the function rxe_create_cq, when rxe_cq_from_init fails, the function
rxe_cleanup will be called to handle the allocated resources. In fact,
some memory resources have already been freed in the function
rxe_cq_from_init. Thus, this problem will occur.
The solution is to let rxe_cleanup do all the work. |
| In the Linux kernel, the following vulnerability has been resolved:
nfs: handle failure of nfs_get_lock_context in unlock path
When memory is insufficient, the allocation of nfs_lock_context in
nfs_get_lock_context() fails and returns -ENOMEM. If we mistakenly treat
an nfs4_unlockdata structure (whose l_ctx member has been set to -ENOMEM)
as valid and proceed to execute rpc_run_task(), this will trigger a NULL
pointer dereference in nfs4_locku_prepare. For example:
BUG: kernel NULL pointer dereference, address: 000000000000000c
PGD 0 P4D 0
Oops: Oops: 0000 [#1] SMP PTI
CPU: 15 UID: 0 PID: 12 Comm: kworker/u64:0 Not tainted 6.15.0-rc2-dirty #60
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-2.fc40
Workqueue: rpciod rpc_async_schedule
RIP: 0010:nfs4_locku_prepare+0x35/0xc2
Code: 89 f2 48 89 fd 48 c7 c7 68 69 ef b5 53 48 8b 8e 90 00 00 00 48 89 f3
RSP: 0018:ffffbbafc006bdb8 EFLAGS: 00010246
RAX: 000000000000004b RBX: ffff9b964fc1fa00 RCX: 0000000000000000
RDX: 0000000000000000 RSI: fffffffffffffff4 RDI: ffff9ba53fddbf40
RBP: ffff9ba539934000 R08: 0000000000000000 R09: ffffbbafc006bc38
R10: ffffffffb6b689c8 R11: 0000000000000003 R12: ffff9ba539934030
R13: 0000000000000001 R14: 0000000004248060 R15: ffffffffb56d1c30
FS: 0000000000000000(0000) GS:ffff9ba5881f0000(0000) knlGS:00000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000000000000000c CR3: 000000093f244000 CR4: 00000000000006f0
Call Trace:
<TASK>
__rpc_execute+0xbc/0x480
rpc_async_schedule+0x2f/0x40
process_one_work+0x232/0x5d0
worker_thread+0x1da/0x3d0
? __pfx_worker_thread+0x10/0x10
kthread+0x10d/0x240
? __pfx_kthread+0x10/0x10
ret_from_fork+0x34/0x50
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK>
Modules linked in:
CR2: 000000000000000c
---[ end trace 0000000000000000 ]---
Free the allocated nfs4_unlockdata when nfs_get_lock_context() fails and
return NULL to terminate subsequent rpc_run_task, preventing NULL pointer
dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Disable MACsec offload for uplink representor profile
MACsec offload is not supported in switchdev mode for uplink
representors. When switching to the uplink representor profile, the
MACsec offload feature must be cleared from the netdevice's features.
If left enabled, attempts to add offloads result in a null pointer
dereference, as the uplink representor does not support MACsec offload
even though the feature bit remains set.
Clear NETIF_F_HW_MACSEC in mlx5e_fix_uplink_rep_features().
Kernel log:
Oops: general protection fault, probably for non-canonical address 0xdffffc000000000f: 0000 [#1] SMP KASAN
KASAN: null-ptr-deref in range [0x0000000000000078-0x000000000000007f]
CPU: 29 UID: 0 PID: 4714 Comm: ip Not tainted 6.14.0-rc4_for_upstream_debug_2025_03_02_17_35 #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
RIP: 0010:__mutex_lock+0x128/0x1dd0
Code: d0 7c 08 84 d2 0f 85 ad 15 00 00 8b 35 91 5c fe 03 85 f6 75 29 49 8d 7e 60 48 b8 00 00 00 00 00 fc ff df 48 89 fa 48 c1 ea 03 <80> 3c 02 00 0f 85 a6 15 00 00 4d 3b 76 60 0f 85 fd 0b 00 00 65 ff
RSP: 0018:ffff888147a4f160 EFLAGS: 00010206
RAX: dffffc0000000000 RBX: 0000000000000000 RCX: 0000000000000001
RDX: 000000000000000f RSI: 0000000000000000 RDI: 0000000000000078
RBP: ffff888147a4f2e0 R08: ffffffffa05d2c19 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: dffffc0000000000 R14: 0000000000000018 R15: ffff888152de0000
FS: 00007f855e27d800(0000) GS:ffff88881ee80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000004e5768 CR3: 000000013ae7c005 CR4: 0000000000372eb0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe07f0 DR7: 0000000000000400
Call Trace:
<TASK>
? die_addr+0x3d/0xa0
? exc_general_protection+0x144/0x220
? asm_exc_general_protection+0x22/0x30
? mlx5e_macsec_add_secy+0xf9/0x700 [mlx5_core]
? __mutex_lock+0x128/0x1dd0
? lockdep_set_lock_cmp_fn+0x190/0x190
? mlx5e_macsec_add_secy+0xf9/0x700 [mlx5_core]
? mutex_lock_io_nested+0x1ae0/0x1ae0
? lock_acquire+0x1c2/0x530
? macsec_upd_offload+0x145/0x380
? lockdep_hardirqs_on_prepare+0x400/0x400
? kasan_save_stack+0x30/0x40
? kasan_save_stack+0x20/0x40
? kasan_save_track+0x10/0x30
? __kasan_kmalloc+0x77/0x90
? __kmalloc_noprof+0x249/0x6b0
? genl_family_rcv_msg_attrs_parse.constprop.0+0xb5/0x240
? mlx5e_macsec_add_secy+0xf9/0x700 [mlx5_core]
mlx5e_macsec_add_secy+0xf9/0x700 [mlx5_core]
? mlx5e_macsec_add_rxsa+0x11a0/0x11a0 [mlx5_core]
macsec_update_offload+0x26c/0x820
? macsec_set_mac_address+0x4b0/0x4b0
? lockdep_hardirqs_on_prepare+0x284/0x400
? _raw_spin_unlock_irqrestore+0x47/0x50
macsec_upd_offload+0x2c8/0x380
? macsec_update_offload+0x820/0x820
? __nla_parse+0x22/0x30
? genl_family_rcv_msg_attrs_parse.constprop.0+0x15e/0x240
genl_family_rcv_msg_doit+0x1cc/0x2a0
? genl_family_rcv_msg_attrs_parse.constprop.0+0x240/0x240
? cap_capable+0xd4/0x330
genl_rcv_msg+0x3ea/0x670
? genl_family_rcv_msg_dumpit+0x2a0/0x2a0
? lockdep_set_lock_cmp_fn+0x190/0x190
? macsec_update_offload+0x820/0x820
netlink_rcv_skb+0x12b/0x390
? genl_family_rcv_msg_dumpit+0x2a0/0x2a0
? netlink_ack+0xd80/0xd80
? rwsem_down_read_slowpath+0xf90/0xf90
? netlink_deliver_tap+0xcd/0xac0
? netlink_deliver_tap+0x155/0xac0
? _copy_from_iter+0x1bb/0x12c0
genl_rcv+0x24/0x40
netlink_unicast+0x440/0x700
? netlink_attachskb+0x760/0x760
? lock_acquire+0x1c2/0x530
? __might_fault+0xbb/0x170
netlink_sendmsg+0x749/0xc10
? netlink_unicast+0x700/0x700
? __might_fault+0xbb/0x170
? netlink_unicast+0x700/0x700
__sock_sendmsg+0xc5/0x190
____sys_sendmsg+0x53f/0x760
? import_iovec+0x7/0x10
? kernel_sendmsg+0x30/0x30
? __copy_msghdr+0x3c0/0x3c0
? filter_irq_stacks+0x90/0x90
? stack_depot_save_flags+0x28/0xa30
___sys_sen
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
net/tls: fix kernel panic when alloc_page failed
We cannot set frag_list to NULL pointer when alloc_page failed.
It will be used in tls_strp_check_queue_ok when the next time
tls_strp_read_sock is called.
This is because we don't reset full_len in tls_strp_flush_anchor_copy()
so the recv path will try to continue handling the partial record
on the next call but we dettached the rcvq from the frag list.
Alternative fix would be to reset full_len.
Unable to handle kernel NULL pointer dereference
at virtual address 0000000000000028
Call trace:
tls_strp_check_rcv+0x128/0x27c
tls_strp_data_ready+0x34/0x44
tls_data_ready+0x3c/0x1f0
tcp_data_ready+0x9c/0xe4
tcp_data_queue+0xf6c/0x12d0
tcp_rcv_established+0x52c/0x798 |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: idxd: fix memory leak in error handling path of idxd_alloc
Memory allocated for idxd is not freed if an error occurs during
idxd_alloc(). To fix it, free the allocated memory in the reverse order
of allocation before exiting the function in case of an error. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: disable napi on driver removal
A warning on driver removal started occurring after commit 9dd05df8403b
("net: warn if NAPI instance wasn't shut down"). Disable tx napi before
deleting it in mt76_dma_cleanup().
WARNING: CPU: 4 PID: 18828 at net/core/dev.c:7288 __netif_napi_del_locked+0xf0/0x100
CPU: 4 UID: 0 PID: 18828 Comm: modprobe Not tainted 6.15.0-rc4 #4 PREEMPT(lazy)
Hardware name: ASUS System Product Name/PRIME X670E-PRO WIFI, BIOS 3035 09/05/2024
RIP: 0010:__netif_napi_del_locked+0xf0/0x100
Call Trace:
<TASK>
mt76_dma_cleanup+0x54/0x2f0 [mt76]
mt7921_pci_remove+0xd5/0x190 [mt7921e]
pci_device_remove+0x47/0xc0
device_release_driver_internal+0x19e/0x200
driver_detach+0x48/0x90
bus_remove_driver+0x6d/0xf0
pci_unregister_driver+0x2e/0xb0
__do_sys_delete_module.isra.0+0x197/0x2e0
do_syscall_64+0x7b/0x160
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Tested with mt7921e but the same pattern can be actually applied to other
mt76 drivers calling mt76_dma_cleanup() during removal. Tx napi is enabled
in their *_dma_init() functions and only toggled off and on again inside
their suspend/resume/reset paths. So it should be okay to disable tx
napi in such a generic way.
Found by Linux Verification Center (linuxtesting.org). |
| In the Linux kernel, the following vulnerability has been resolved:
HID: uclogic: Add NULL check in uclogic_input_configured()
devm_kasprintf() returns NULL when memory allocation fails. Currently,
uclogic_input_configured() does not check for this case, which results
in a NULL pointer dereference.
Add NULL check after devm_kasprintf() to prevent this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: ti: k3-udma: Add missing locking
Recent kernels complain about a missing lock in k3-udma.c when the lock
validator is enabled:
[ 4.128073] WARNING: CPU: 0 PID: 746 at drivers/dma/ti/../virt-dma.h:169 udma_start.isra.0+0x34/0x238
[ 4.137352] CPU: 0 UID: 0 PID: 746 Comm: kworker/0:3 Not tainted 6.12.9-arm64 #28
[ 4.144867] Hardware name: pp-v12 (DT)
[ 4.148648] Workqueue: events udma_check_tx_completion
[ 4.153841] pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 4.160834] pc : udma_start.isra.0+0x34/0x238
[ 4.165227] lr : udma_start.isra.0+0x30/0x238
[ 4.169618] sp : ffffffc083cabcf0
[ 4.172963] x29: ffffffc083cabcf0 x28: 0000000000000000 x27: ffffff800001b005
[ 4.180167] x26: ffffffc0812f0000 x25: 0000000000000000 x24: 0000000000000000
[ 4.187370] x23: 0000000000000001 x22: 00000000e21eabe9 x21: ffffff8000fa0670
[ 4.194571] x20: ffffff8001b6bf00 x19: ffffff8000fa0430 x18: ffffffc083b95030
[ 4.201773] x17: 0000000000000000 x16: 00000000f0000000 x15: 0000000000000048
[ 4.208976] x14: 0000000000000048 x13: 0000000000000000 x12: 0000000000000001
[ 4.216179] x11: ffffffc08151a240 x10: 0000000000003ea1 x9 : ffffffc08046ab68
[ 4.223381] x8 : ffffffc083cabac0 x7 : ffffffc081df3718 x6 : 0000000000029fc8
[ 4.230583] x5 : ffffffc0817ee6d8 x4 : 0000000000000bc0 x3 : 0000000000000000
[ 4.237784] x2 : 0000000000000000 x1 : 00000000001fffff x0 : 0000000000000000
[ 4.244986] Call trace:
[ 4.247463] udma_start.isra.0+0x34/0x238
[ 4.251509] udma_check_tx_completion+0xd0/0xdc
[ 4.256076] process_one_work+0x244/0x3fc
[ 4.260129] process_scheduled_works+0x6c/0x74
[ 4.264610] worker_thread+0x150/0x1dc
[ 4.268398] kthread+0xd8/0xe8
[ 4.271492] ret_from_fork+0x10/0x20
[ 4.275107] irq event stamp: 220
[ 4.278363] hardirqs last enabled at (219): [<ffffffc080a27c7c>] _raw_spin_unlock_irq+0x38/0x50
[ 4.287183] hardirqs last disabled at (220): [<ffffffc080a1c154>] el1_dbg+0x24/0x50
[ 4.294879] softirqs last enabled at (182): [<ffffffc080037e68>] handle_softirqs+0x1c0/0x3cc
[ 4.303437] softirqs last disabled at (177): [<ffffffc080010170>] __do_softirq+0x1c/0x28
[ 4.311559] ---[ end trace 0000000000000000 ]---
This commit adds the missing locking. |
| In the Linux kernel, the following vulnerability has been resolved:
sch_htb: make htb_deactivate() idempotent
Alan reported a NULL pointer dereference in htb_next_rb_node()
after we made htb_qlen_notify() idempotent.
It turns out in the following case it introduced some regression:
htb_dequeue_tree():
|-> fq_codel_dequeue()
|-> qdisc_tree_reduce_backlog()
|-> htb_qlen_notify()
|-> htb_deactivate()
|-> htb_next_rb_node()
|-> htb_deactivate()
For htb_next_rb_node(), after calling the 1st htb_deactivate(), the
clprio[prio]->ptr could be already set to NULL, which means
htb_next_rb_node() is vulnerable here.
For htb_deactivate(), although we checked qlen before calling it, in
case of qlen==0 after qdisc_tree_reduce_backlog(), we may call it again
which triggers the warning inside.
To fix the issues here, we need to:
1) Make htb_deactivate() idempotent, that is, simply return if we
already call it before.
2) Make htb_next_rb_node() safe against ptr==NULL.
Many thanks to Alan for testing and for the reproducer. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/v3d: Add job to pending list if the reset was skipped
When a CL/CSD job times out, we check if the GPU has made any progress
since the last timeout. If so, instead of resetting the hardware, we skip
the reset and let the timer get rearmed. This gives long-running jobs a
chance to complete.
However, when `timedout_job()` is called, the job in question is removed
from the pending list, which means it won't be automatically freed through
`free_job()`. Consequently, when we skip the reset and keep the job
running, the job won't be freed when it finally completes.
This situation leads to a memory leak, as exposed in [1] and [2].
Similarly to commit 704d3d60fec4 ("drm/etnaviv: don't block scheduler when
GPU is still active"), this patch ensures the job is put back on the
pending list when extending the timeout. |
| In the Linux kernel, the following vulnerability has been resolved:
xenbus: Use kref to track req lifetime
Marek reported seeing a NULL pointer fault in the xenbus_thread
callstack:
BUG: kernel NULL pointer dereference, address: 0000000000000000
RIP: e030:__wake_up_common+0x4c/0x180
Call Trace:
<TASK>
__wake_up_common_lock+0x82/0xd0
process_msg+0x18e/0x2f0
xenbus_thread+0x165/0x1c0
process_msg+0x18e is req->cb(req). req->cb is set to xs_wake_up(), a
thin wrapper around wake_up(), or xenbus_dev_queue_reply(). It seems
like it was xs_wake_up() in this case.
It seems like req may have woken up the xs_wait_for_reply(), which
kfree()ed the req. When xenbus_thread resumes, it faults on the zero-ed
data.
Linux Device Drivers 2nd edition states:
"Normally, a wake_up call can cause an immediate reschedule to happen,
meaning that other processes might run before wake_up returns."
... which would match the behaviour observed.
Change to keeping two krefs on each request. One for the caller, and
one for xenbus_thread. Each will kref_put() when finished, and the last
will free it.
This use of kref matches the description in
Documentation/core-api/kref.rst |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: bpf: Add BHB mitigation to the epilogue for cBPF programs
A malicious BPF program may manipulate the branch history to influence
what the hardware speculates will happen next.
On exit from a BPF program, emit the BHB mititgation sequence.
This is only applied for 'classic' cBPF programs that are loaded by
seccomp. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: prevent out-of-bounds stream writes by validating *pos
ksmbd_vfs_stream_write() did not validate whether the write offset
(*pos) was within the bounds of the existing stream data length (v_len).
If *pos was greater than or equal to v_len, this could lead to an
out-of-bounds memory write.
This patch adds a check to ensure *pos is less than v_len before
proceeding. If the condition fails, -EINVAL is returned. |
| In the Linux kernel, the following vulnerability has been resolved:
ftrace: Add cond_resched() to ftrace_graph_set_hash()
When the kernel contains a large number of functions that can be traced,
the loop in ftrace_graph_set_hash() may take a lot of time to execute.
This may trigger the softlockup watchdog.
Add cond_resched() within the loop to allow the kernel to remain
responsive even when processing a large number of functions.
This matches the cond_resched() that is used in other locations of the
code that iterates over all functions that can be traced. |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Verify event formats that have "%*p.."
The trace event verifier checks the formats of trace events to make sure
that they do not point at memory that is not in the trace event itself or
in data that will never be freed. If an event references data that was
allocated when the event triggered and that same data is freed before the
event is read, then the kernel can crash by reading freed memory.
The verifier runs at boot up (or module load) and scans the print formats
of the events and checks their arguments to make sure that dereferenced
pointers are safe. If the format uses "%*p.." the verifier will ignore it,
and that could be dangerous. Cover this case as well.
Also add to the sample code a use case of "%*pbl". |