Search

Search Results (328310 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-7195 1 Redhat 13 Acm, Advanced Cluster Security, Apicurio Registry and 10 more 2026-01-19 5.2 Medium
Early versions of Operator-SDK provided an insecure method to allow operator containers to run in environments that used a random UID. Operator-SDK before 0.15.2 provided a script, user_setup, which modifies the permissions of the /etc/passwd file to 664 during build time. Developers who used Operator-SDK before 0.15.2 to scaffold their operator may still be impacted by this if the insecure user_setup script is still being used to build new container images. In affected images, the /etc/passwd file is created during build time with group-writable permissions and a group ownership of root (gid=0). An attacker who can execute commands within an affected container, even as a non-root user, may be able to leverage their membership in the root group to modify the /etc/passwd file. This could allow the attacker to add a new user with any arbitrary UID, including UID 0, leading to full root privileges within the container.
CVE-2025-71137 1 Linux 1 Linux Kernel 2026-01-19 7.0 High
In the Linux kernel, the following vulnerability has been resolved: octeontx2-pf: fix "UBSAN: shift-out-of-bounds error" This patch ensures that the RX ring size (rx_pending) is not set below the permitted length. This avoids UBSAN shift-out-of-bounds errors when users passes small or zero ring sizes via ethtool -G.
CVE-2025-71136 1 Linux 1 Linux Kernel 2026-01-19 N/A
In the Linux kernel, the following vulnerability has been resolved: media: adv7842: Avoid possible out-of-bounds array accesses in adv7842_cp_log_status() It's possible for cp_read() and hdmi_read() to return -EIO. Those values are further used as indexes for accessing arrays. Fix that by checking return values where it's needed. Found by Linux Verification Center (linuxtesting.org) with SVACE.
CVE-2025-71133 1 Linux 1 Linux Kernel 2026-01-19 7.0 High
In the Linux kernel, the following vulnerability has been resolved: RDMA/irdma: avoid invalid read in irdma_net_event irdma_net_event() should not dereference anything from "neigh" (alias "ptr") until it has checked that the event is NETEVENT_NEIGH_UPDATE. Other events come with different structures pointed to by "ptr" and they may be smaller than struct neighbour. Move the read of neigh->dev under the NETEVENT_NEIGH_UPDATE case. The bug is mostly harmless, but it triggers KASAN on debug kernels: BUG: KASAN: stack-out-of-bounds in irdma_net_event+0x32e/0x3b0 [irdma] Read of size 8 at addr ffffc900075e07f0 by task kworker/27:2/542554 CPU: 27 PID: 542554 Comm: kworker/27:2 Kdump: loaded Not tainted 5.14.0-630.el9.x86_64+debug #1 Hardware name: [...] Workqueue: events rt6_probe_deferred Call Trace: <IRQ> dump_stack_lvl+0x60/0xb0 print_address_description.constprop.0+0x2c/0x3f0 print_report+0xb4/0x270 kasan_report+0x92/0xc0 irdma_net_event+0x32e/0x3b0 [irdma] notifier_call_chain+0x9e/0x180 atomic_notifier_call_chain+0x5c/0x110 rt6_do_redirect+0xb91/0x1080 tcp_v6_err+0xe9b/0x13e0 icmpv6_notify+0x2b2/0x630 ndisc_redirect_rcv+0x328/0x530 icmpv6_rcv+0xc16/0x1360 ip6_protocol_deliver_rcu+0xb84/0x12e0 ip6_input_finish+0x117/0x240 ip6_input+0xc4/0x370 ipv6_rcv+0x420/0x7d0 __netif_receive_skb_one_core+0x118/0x1b0 process_backlog+0xd1/0x5d0 __napi_poll.constprop.0+0xa3/0x440 net_rx_action+0x78a/0xba0 handle_softirqs+0x2d4/0x9c0 do_softirq+0xad/0xe0 </IRQ>
CVE-2025-71132 1 Linux 1 Linux Kernel 2026-01-19 7.0 High
In the Linux kernel, the following vulnerability has been resolved: smc91x: fix broken irq-context in PREEMPT_RT When smc91x.c is built with PREEMPT_RT, the following splat occurs in FVP_RevC: [ 13.055000] smc91x LNRO0003:00 eth0: link up, 10Mbps, half-duplex, lpa 0x0000 [ 13.062137] BUG: workqueue leaked atomic, lock or RCU: kworker/2:1[106] [ 13.062137] preempt=0x00000000 lock=0->0 RCU=0->1 workfn=mld_ifc_work [ 13.062266] C ** replaying previous printk message ** [ 13.062266] CPU: 2 UID: 0 PID: 106 Comm: kworker/2:1 Not tainted 6.18.0-dirty #179 PREEMPT_{RT,(full)} [ 13.062353] Hardware name: , BIOS [ 13.062382] Workqueue: mld mld_ifc_work [ 13.062469] Call trace: [ 13.062494] show_stack+0x24/0x40 (C) [ 13.062602] __dump_stack+0x28/0x48 [ 13.062710] dump_stack_lvl+0x7c/0xb0 [ 13.062818] dump_stack+0x18/0x34 [ 13.062926] process_scheduled_works+0x294/0x450 [ 13.063043] worker_thread+0x260/0x3d8 [ 13.063124] kthread+0x1c4/0x228 [ 13.063235] ret_from_fork+0x10/0x20 This happens because smc_special_trylock() disables IRQs even on PREEMPT_RT, but smc_special_unlock() does not restore IRQs on PREEMPT_RT. The reason is that smc_special_unlock() calls spin_unlock_irqrestore(), and rcu_read_unlock_bh() in __dev_queue_xmit() cannot invoke rcu_read_unlock() through __local_bh_enable_ip() when current->softirq_disable_cnt becomes zero. To address this issue, replace smc_special_trylock() with spin_trylock_irqsave().
CVE-2025-71131 1 Linux 1 Linux Kernel 2026-01-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: crypto: seqiv - Do not use req->iv after crypto_aead_encrypt As soon as crypto_aead_encrypt is called, the underlying request may be freed by an asynchronous completion. Thus dereferencing req->iv after it returns is invalid. Instead of checking req->iv against info, create a new variable unaligned_info and use it for that purpose instead.
CVE-2025-71127 1 Linux 1 Linux Kernel 2026-01-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: Discard Beacon frames to non-broadcast address Beacon frames are required to be sent to the broadcast address, see IEEE Std 802.11-2020, 11.1.3.1 ("The Address 1 field of the Beacon .. frame shall be set to the broadcast address"). A unicast Beacon frame might be used as a targeted attack to get one of the associated STAs to do something (e.g., using CSA to move it to another channel). As such, it is better have strict filtering for this on the received side and discard all Beacon frames that are sent to an unexpected address. This is even more important for cases where beacon protection is used. The current implementation in mac80211 is correctly discarding unicast Beacon frames if the Protected Frame bit in the Frame Control field is set to 0. However, if that bit is set to 1, the logic used for checking for configured BIGTK(s) does not actually work. If the driver does not have logic for dropping unicast Beacon frames with Protected Frame bit 1, these frames would be accepted in mac80211 processing as valid Beacon frames even though they are not protected. This would allow beacon protection to be bypassed. While the logic for checking beacon protection could be extended to cover this corner case, a more generic check for discard all Beacon frames based on A1=unicast address covers this without needing additional changes. Address all these issues by dropping received Beacon frames if they are sent to a non-broadcast address.
CVE-2025-71125 1 Linux 1 Linux Kernel 2026-01-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: tracing: Do not register unsupported perf events Synthetic events currently do not have a function to register perf events. This leads to calling the tracepoint register functions with a NULL function pointer which triggers: ------------[ cut here ]------------ WARNING: kernel/tracepoint.c:175 at tracepoint_add_func+0x357/0x370, CPU#2: perf/2272 Modules linked in: kvm_intel kvm irqbypass CPU: 2 UID: 0 PID: 2272 Comm: perf Not tainted 6.18.0-ftest-11964-ge022764176fc-dirty #323 PREEMPTLAZY Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.17.0-debian-1.17.0-1 04/01/2014 RIP: 0010:tracepoint_add_func+0x357/0x370 Code: 28 9c e8 4c 0b f5 ff eb 0f 4c 89 f7 48 c7 c6 80 4d 28 9c e8 ab 89 f4 ff 31 c0 5b 41 5c 41 5d 41 5e 41 5f 5d c3 cc cc cc cc cc <0f> 0b 49 c7 c6 ea ff ff ff e9 ee fe ff ff 0f 0b e9 f9 fe ff ff 0f RSP: 0018:ffffabc0c44d3c40 EFLAGS: 00010246 RAX: 0000000000000001 RBX: ffff9380aa9e4060 RCX: 0000000000000000 RDX: 000000000000000a RSI: ffffffff9e1d4a98 RDI: ffff937fcf5fd6c8 RBP: 0000000000000001 R08: 0000000000000007 R09: ffff937fcf5fc780 R10: 0000000000000003 R11: ffffffff9c193910 R12: 000000000000000a R13: ffffffff9e1e5888 R14: 0000000000000000 R15: ffffabc0c44d3c78 FS: 00007f6202f5f340(0000) GS:ffff93819f00f000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000055d3162281a8 CR3: 0000000106a56003 CR4: 0000000000172ef0 Call Trace: <TASK> tracepoint_probe_register+0x5d/0x90 synth_event_reg+0x3c/0x60 perf_trace_event_init+0x204/0x340 perf_trace_init+0x85/0xd0 perf_tp_event_init+0x2e/0x50 perf_try_init_event+0x6f/0x230 ? perf_event_alloc+0x4bb/0xdc0 perf_event_alloc+0x65a/0xdc0 __se_sys_perf_event_open+0x290/0x9f0 do_syscall_64+0x93/0x7b0 ? entry_SYSCALL_64_after_hwframe+0x76/0x7e ? trace_hardirqs_off+0x53/0xc0 entry_SYSCALL_64_after_hwframe+0x76/0x7e Instead, have the code return -ENODEV, which doesn't warn and has perf error out with: # perf record -e synthetic:futex_wait Error: The sys_perf_event_open() syscall returned with 19 (No such device) for event (synthetic:futex_wait). "dmesg | grep -i perf" may provide additional information. Ideally perf should support synthetic events, but for now just fix the warning. The support can come later.
CVE-2025-71123 1 Linux 1 Linux Kernel 2026-01-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ext4: fix string copying in parse_apply_sb_mount_options() strscpy_pad() can't be used to copy a non-NUL-term string into a NUL-term string of possibly bigger size. Commit 0efc5990bca5 ("string.h: Introduce memtostr() and memtostr_pad()") provides additional information in that regard. So if this happens, the following warning is observed: strnlen: detected buffer overflow: 65 byte read of buffer size 64 WARNING: CPU: 0 PID: 28655 at lib/string_helpers.c:1032 __fortify_report+0x96/0xc0 lib/string_helpers.c:1032 Modules linked in: CPU: 0 UID: 0 PID: 28655 Comm: syz-executor.3 Not tainted 6.12.54-syzkaller-00144-g5f0270f1ba00 #0 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 RIP: 0010:__fortify_report+0x96/0xc0 lib/string_helpers.c:1032 Call Trace: <TASK> __fortify_panic+0x1f/0x30 lib/string_helpers.c:1039 strnlen include/linux/fortify-string.h:235 [inline] sized_strscpy include/linux/fortify-string.h:309 [inline] parse_apply_sb_mount_options fs/ext4/super.c:2504 [inline] __ext4_fill_super fs/ext4/super.c:5261 [inline] ext4_fill_super+0x3c35/0xad00 fs/ext4/super.c:5706 get_tree_bdev_flags+0x387/0x620 fs/super.c:1636 vfs_get_tree+0x93/0x380 fs/super.c:1814 do_new_mount fs/namespace.c:3553 [inline] path_mount+0x6ae/0x1f70 fs/namespace.c:3880 do_mount fs/namespace.c:3893 [inline] __do_sys_mount fs/namespace.c:4103 [inline] __se_sys_mount fs/namespace.c:4080 [inline] __x64_sys_mount+0x280/0x300 fs/namespace.c:4080 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0x64/0x140 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x76/0x7e Since userspace is expected to provide s_mount_opts field to be at most 63 characters long with the ending byte being NUL-term, use a 64-byte buffer which matches the size of s_mount_opts, so that strscpy_pad() does its job properly. Return with error if the user still managed to provide a non-NUL-term string here. Found by Linux Verification Center (linuxtesting.org) with Syzkaller.
CVE-2025-71121 1 Linux 1 Linux Kernel 2026-01-19 N/A
In the Linux kernel, the following vulnerability has been resolved: parisc: Do not reprogram affinitiy on ASP chip The ASP chip is a very old variant of the GSP chip and is used e.g. in HP 730 workstations. When trying to reprogram the affinity it will crash with a HPMC as the relevant registers don't seem to be at the usual location. Let's avoid the crash by checking the sversion. Also note, that reprogramming isn't necessary either, as the HP730 is a just a single-CPU machine.
CVE-2025-71120 1 Linux 1 Linux Kernel 2026-01-19 7.0 High
In the Linux kernel, the following vulnerability has been resolved: SUNRPC: svcauth_gss: avoid NULL deref on zero length gss_token in gss_read_proxy_verf A zero length gss_token results in pages == 0 and in_token->pages[0] is NULL. The code unconditionally evaluates page_address(in_token->pages[0]) for the initial memcpy, which can dereference NULL even when the copy length is 0. Guard the first memcpy so it only runs when length > 0.
CVE-2025-71118 1 Linux 1 Linux Kernel 2026-01-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ACPICA: Avoid walking the Namespace if start_node is NULL Although commit 0c9992315e73 ("ACPICA: Avoid walking the ACPI Namespace if it is not there") fixed the situation when both start_node and acpi_gbl_root_node are NULL, the Linux kernel mainline now still crashed on Honor Magicbook 14 Pro [1]. That happens due to the access to the member of parent_node in acpi_ns_get_next_node(). The NULL pointer dereference will always happen, no matter whether or not the start_node is equal to ACPI_ROOT_OBJECT, so move the check of start_node being NULL out of the if block. Unfortunately, all the attempts to contact Honor have failed, they refused to provide any technical support for Linux. The bad DSDT table's dump could be found on GitHub [2]. DMI: HONOR FMB-P/FMB-P-PCB, BIOS 1.13 05/08/2025 [ rjw: Subject adjustment, changelog edits ]
CVE-2025-71116 1 Linux 1 Linux Kernel 2026-01-19 7.0 High
In the Linux kernel, the following vulnerability has been resolved: libceph: make decode_pool() more resilient against corrupted osdmaps If the osdmap is (maliciously) corrupted such that the encoded length of ceph_pg_pool envelope is less than what is expected for a particular encoding version, out-of-bounds reads may ensue because the only bounds check that is there is based on that length value. This patch adds explicit bounds checks for each field that is decoded or skipped.
CVE-2025-71114 1 Linux 1 Linux Kernel 2026-01-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: via_wdt: fix critical boot hang due to unnamed resource allocation The VIA watchdog driver uses allocate_resource() to reserve a MMIO region for the watchdog control register. However, the allocated resource was not given a name, which causes the kernel resource tree to contain an entry marked as "<BAD>" under /proc/iomem on x86 platforms. During boot, this unnamed resource can lead to a critical hang because subsequent resource lookups and conflict checks fail to handle the invalid entry properly.
CVE-2025-71113 1 Linux 1 Linux Kernel 2026-01-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: crypto: af_alg - zero initialize memory allocated via sock_kmalloc Several crypto user API contexts and requests allocated with sock_kmalloc() were left uninitialized, relying on callers to set fields explicitly. This resulted in the use of uninitialized data in certain error paths or when new fields are added in the future. The ACVP patches also contain two user-space interface files: algif_kpp.c and algif_akcipher.c. These too rely on proper initialization of their context structures. A particular issue has been observed with the newly added 'inflight' variable introduced in af_alg_ctx by commit: 67b164a871af ("crypto: af_alg - Disallow multiple in-flight AIO requests") Because the context is not memset to zero after allocation, the inflight variable has contained garbage values. As a result, af_alg_alloc_areq() has incorrectly returned -EBUSY randomly when the garbage value was interpreted as true: https://github.com/gregkh/linux/blame/master/crypto/af_alg.c#L1209 The check directly tests ctx->inflight without explicitly comparing against true/false. Since inflight is only ever set to true or false later, an uninitialized value has triggered -EBUSY failures. Zero-initializing memory allocated with sock_kmalloc() ensures inflight and other fields start in a known state, removing random issues caused by uninitialized data.
CVE-2025-71112 1 Linux 1 Linux Kernel 2026-01-19 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: hns3: add VLAN id validation before using Currently, the VLAN id may be used without validation when receive a VLAN configuration mailbox from VF. The length of vlan_del_fail_bmap is BITS_TO_LONGS(VLAN_N_VID). It may cause out-of-bounds memory access once the VLAN id is bigger than or equal to VLAN_N_VID. Therefore, VLAN id needs to be checked to ensure it is within the range of VLAN_N_VID.
CVE-2025-71111 1 Linux 1 Linux Kernel 2026-01-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: hwmon: (w83791d) Convert macros to functions to avoid TOCTOU The macro FAN_FROM_REG evaluates its arguments multiple times. When used in lockless contexts involving shared driver data, this leads to Time-of-Check to Time-of-Use (TOCTOU) race conditions, potentially causing divide-by-zero errors. Convert the macro to a static function. This guarantees that arguments are evaluated only once (pass-by-value), preventing the race conditions. Additionally, in store_fan_div, move the calculation of the minimum limit inside the update lock. This ensures that the read-modify-write sequence operates on consistent data. Adhere to the principle of minimal changes by only converting macros that evaluate arguments multiple times and are used in lockless contexts.
CVE-2025-71108 1 Linux 1 Linux Kernel 2026-01-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: usb: typec: ucsi: Handle incorrect num_connectors capability The UCSI spec states that the num_connectors field is 7 bits, and the 8th bit is reserved and should be set to zero. Some buggy FW has been known to set this bit, and it can lead to a system not booting. Flag that the FW is not behaving correctly, and auto-fix the value so that the system boots correctly. Found on Lenovo P1 G8 during Linux enablement program. The FW will be fixed, but seemed worth addressing in case it hit platforms that aren't officially Linux supported.
CVE-2025-71105 1 Linux 1 Linux Kernel 2026-01-19 N/A
In the Linux kernel, the following vulnerability has been resolved: f2fs: use global inline_xattr_slab instead of per-sb slab cache As Hong Yun reported in mailing list: loop7: detected capacity change from 0 to 131072 ------------[ cut here ]------------ kmem_cache of name 'f2fs_xattr_entry-7:7' already exists WARNING: CPU: 0 PID: 24426 at mm/slab_common.c:110 kmem_cache_sanity_check mm/slab_common.c:109 [inline] WARNING: CPU: 0 PID: 24426 at mm/slab_common.c:110 __kmem_cache_create_args+0xa6/0x320 mm/slab_common.c:307 CPU: 0 UID: 0 PID: 24426 Comm: syz.7.1370 Not tainted 6.17.0-rc4 #1 PREEMPT(full) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014 RIP: 0010:kmem_cache_sanity_check mm/slab_common.c:109 [inline] RIP: 0010:__kmem_cache_create_args+0xa6/0x320 mm/slab_common.c:307 Call Trace:  __kmem_cache_create include/linux/slab.h:353 [inline]  f2fs_kmem_cache_create fs/f2fs/f2fs.h:2943 [inline]  f2fs_init_xattr_caches+0xa5/0xe0 fs/f2fs/xattr.c:843  f2fs_fill_super+0x1645/0x2620 fs/f2fs/super.c:4918  get_tree_bdev_flags+0x1fb/0x260 fs/super.c:1692  vfs_get_tree+0x43/0x140 fs/super.c:1815  do_new_mount+0x201/0x550 fs/namespace.c:3808  do_mount fs/namespace.c:4136 [inline]  __do_sys_mount fs/namespace.c:4347 [inline]  __se_sys_mount+0x298/0x2f0 fs/namespace.c:4324  do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]  do_syscall_64+0x8e/0x3a0 arch/x86/entry/syscall_64.c:94  entry_SYSCALL_64_after_hwframe+0x76/0x7e The bug can be reproduced w/ below scripts: - mount /dev/vdb /mnt1 - mount /dev/vdc /mnt2 - umount /mnt1 - mounnt /dev/vdb /mnt1 The reason is if we created two slab caches, named f2fs_xattr_entry-7:3 and f2fs_xattr_entry-7:7, and they have the same slab size. Actually, slab system will only create one slab cache core structure which has slab name of "f2fs_xattr_entry-7:3", and two slab caches share the same structure and cache address. So, if we destroy f2fs_xattr_entry-7:3 cache w/ cache address, it will decrease reference count of slab cache, rather than release slab cache entirely, since there is one more user has referenced the cache. Then, if we try to create slab cache w/ name "f2fs_xattr_entry-7:3" again, slab system will find that there is existed cache which has the same name and trigger the warning. Let's changes to use global inline_xattr_slab instead of per-sb slab cache for fixing.
CVE-2025-71104 1 Linux 1 Linux Kernel 2026-01-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: KVM: x86: Fix VM hard lockup after prolonged inactivity with periodic HV timer When advancing the target expiration for the guest's APIC timer in periodic mode, set the expiration to "now" if the target expiration is in the past (similar to what is done in update_target_expiration()). Blindly adding the period to the previous target expiration can result in KVM generating a practically unbounded number of hrtimer IRQs due to programming an expired timer over and over. In extreme scenarios, e.g. if userspace pauses/suspends a VM for an extended duration, this can even cause hard lockups in the host. Currently, the bug only affects Intel CPUs when using the hypervisor timer (HV timer), a.k.a. the VMX preemption timer. Unlike the software timer, a.k.a. hrtimer, which KVM keeps running even on exits to userspace, the HV timer only runs while the guest is active. As a result, if the vCPU does not run for an extended duration, there will be a huge gap between the target expiration and the current time the vCPU resumes running. Because the target expiration is incremented by only one period on each timer expiration, this leads to a series of timer expirations occurring rapidly after the vCPU/VM resumes. More critically, when the vCPU first triggers a periodic HV timer expiration after resuming, advancing the expiration by only one period will result in a target expiration in the past. As a result, the delta may be calculated as a negative value. When the delta is converted into an absolute value (tscdeadline is an unsigned u64), the resulting value can overflow what the HV timer is capable of programming. I.e. the large value will exceed the VMX Preemption Timer's maximum bit width of cpu_preemption_timer_multi + 32, and thus cause KVM to switch from the HV timer to the software timer (hrtimers). After switching to the software timer, periodic timer expiration callbacks may be executed consecutively within a single clock interrupt handler, because hrtimers honors KVM's request for an expiration in the past and immediately re-invokes KVM's callback after reprogramming. And because the interrupt handler runs with IRQs disabled, restarting KVM's hrtimer over and over until the target expiration is advanced to "now" can result in a hard lockup. E.g. the following hard lockup was triggered in the host when running a Windows VM (only relevant because it used the APIC timer in periodic mode) after resuming the VM from a long suspend (in the host). NMI watchdog: Watchdog detected hard LOCKUP on cpu 45 ... RIP: 0010:advance_periodic_target_expiration+0x4d/0x80 [kvm] ... RSP: 0018:ff4f88f5d98d8ef0 EFLAGS: 00000046 RAX: fff0103f91be678e RBX: fff0103f91be678e RCX: 00843a7d9e127bcc RDX: 0000000000000002 RSI: 0052ca4003697505 RDI: ff440d5bfbdbd500 RBP: ff440d5956f99200 R08: ff2ff2a42deb6a84 R09: 000000000002a6c0 R10: 0122d794016332b3 R11: 0000000000000000 R12: ff440db1af39cfc0 R13: ff440db1af39cfc0 R14: ffffffffc0d4a560 R15: ff440db1af39d0f8 FS: 00007f04a6ffd700(0000) GS:ff440db1af380000(0000) knlGS:000000e38a3b8000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000000d5651feff8 CR3: 000000684e038002 CR4: 0000000000773ee0 PKRU: 55555554 Call Trace: <IRQ> apic_timer_fn+0x31/0x50 [kvm] __hrtimer_run_queues+0x100/0x280 hrtimer_interrupt+0x100/0x210 ? ttwu_do_wakeup+0x19/0x160 smp_apic_timer_interrupt+0x6a/0x130 apic_timer_interrupt+0xf/0x20 </IRQ> Moreover, if the suspend duration of the virtual machine is not long enough to trigger a hard lockup in this scenario, since commit 98c25ead5eda ("KVM: VMX: Move preemption timer <=> hrtimer dance to common x86"), KVM will continue using the software timer until the guest reprograms the APIC timer in some way. Since the periodic timer does not require frequent APIC timer register programming, the guest may continue to use the software timer in ---truncated---