| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Improper Control of Filename for Include/Require Statement in PHP Program ('PHP Remote File Inclusion') vulnerability in Select-Themes Stockholm stockholm allows PHP Local File Inclusion.This issue affects Stockholm: from n/a through <= 9.14.1. |
| CHOCO TEI WATCHER mini (IB-MCT001) contains an issue with improper check for unusual or exceptional conditions. When the Video Download feature is in a specific communication state, the product's resources may be consumed abnormally. |
| In the Linux kernel, the following vulnerability has been resolved:
ipvs: fix uninit-value for saddr in do_output_route4
syzbot reports for uninit-value for the saddr argument [1].
commit 4754957f04f5 ("ipvs: do not use random local source address for
tunnels") already implies that the input value of saddr
should be ignored but the code is still reading it which can prevent
to connect the route. Fix it by changing the argument to ret_saddr.
[1]
BUG: KMSAN: uninit-value in do_output_route4+0x42c/0x4d0 net/netfilter/ipvs/ip_vs_xmit.c:147
do_output_route4+0x42c/0x4d0 net/netfilter/ipvs/ip_vs_xmit.c:147
__ip_vs_get_out_rt+0x403/0x21d0 net/netfilter/ipvs/ip_vs_xmit.c:330
ip_vs_tunnel_xmit+0x205/0x2380 net/netfilter/ipvs/ip_vs_xmit.c:1136
ip_vs_in_hook+0x1aa5/0x35b0 net/netfilter/ipvs/ip_vs_core.c:2063
nf_hook_entry_hookfn include/linux/netfilter.h:154 [inline]
nf_hook_slow+0xf7/0x400 net/netfilter/core.c:626
nf_hook include/linux/netfilter.h:269 [inline]
__ip_local_out+0x758/0x7e0 net/ipv4/ip_output.c:118
ip_local_out net/ipv4/ip_output.c:127 [inline]
ip_send_skb+0x6a/0x3c0 net/ipv4/ip_output.c:1501
udp_send_skb+0xfda/0x1b70 net/ipv4/udp.c:1195
udp_sendmsg+0x2fe3/0x33c0 net/ipv4/udp.c:1483
inet_sendmsg+0x1fc/0x280 net/ipv4/af_inet.c:851
sock_sendmsg_nosec net/socket.c:712 [inline]
__sock_sendmsg+0x267/0x380 net/socket.c:727
____sys_sendmsg+0x91b/0xda0 net/socket.c:2566
___sys_sendmsg+0x28d/0x3c0 net/socket.c:2620
__sys_sendmmsg+0x41d/0x880 net/socket.c:2702
__compat_sys_sendmmsg net/compat.c:360 [inline]
__do_compat_sys_sendmmsg net/compat.c:367 [inline]
__se_compat_sys_sendmmsg net/compat.c:364 [inline]
__ia32_compat_sys_sendmmsg+0xc8/0x140 net/compat.c:364
ia32_sys_call+0x3ffa/0x41f0 arch/x86/include/generated/asm/syscalls_32.h:346
do_syscall_32_irqs_on arch/x86/entry/syscall_32.c:83 [inline]
__do_fast_syscall_32+0xb0/0x110 arch/x86/entry/syscall_32.c:306
do_fast_syscall_32+0x38/0x80 arch/x86/entry/syscall_32.c:331
do_SYSENTER_32+0x1f/0x30 arch/x86/entry/syscall_32.c:369
entry_SYSENTER_compat_after_hwframe+0x84/0x8e
Uninit was created at:
slab_post_alloc_hook mm/slub.c:4167 [inline]
slab_alloc_node mm/slub.c:4210 [inline]
__kmalloc_cache_noprof+0x8fa/0xe00 mm/slub.c:4367
kmalloc_noprof include/linux/slab.h:905 [inline]
ip_vs_dest_dst_alloc net/netfilter/ipvs/ip_vs_xmit.c:61 [inline]
__ip_vs_get_out_rt+0x35d/0x21d0 net/netfilter/ipvs/ip_vs_xmit.c:323
ip_vs_tunnel_xmit+0x205/0x2380 net/netfilter/ipvs/ip_vs_xmit.c:1136
ip_vs_in_hook+0x1aa5/0x35b0 net/netfilter/ipvs/ip_vs_core.c:2063
nf_hook_entry_hookfn include/linux/netfilter.h:154 [inline]
nf_hook_slow+0xf7/0x400 net/netfilter/core.c:626
nf_hook include/linux/netfilter.h:269 [inline]
__ip_local_out+0x758/0x7e0 net/ipv4/ip_output.c:118
ip_local_out net/ipv4/ip_output.c:127 [inline]
ip_send_skb+0x6a/0x3c0 net/ipv4/ip_output.c:1501
udp_send_skb+0xfda/0x1b70 net/ipv4/udp.c:1195
udp_sendmsg+0x2fe3/0x33c0 net/ipv4/udp.c:1483
inet_sendmsg+0x1fc/0x280 net/ipv4/af_inet.c:851
sock_sendmsg_nosec net/socket.c:712 [inline]
__sock_sendmsg+0x267/0x380 net/socket.c:727
____sys_sendmsg+0x91b/0xda0 net/socket.c:2566
___sys_sendmsg+0x28d/0x3c0 net/socket.c:2620
__sys_sendmmsg+0x41d/0x880 net/socket.c:2702
__compat_sys_sendmmsg net/compat.c:360 [inline]
__do_compat_sys_sendmmsg net/compat.c:367 [inline]
__se_compat_sys_sendmmsg net/compat.c:364 [inline]
__ia32_compat_sys_sendmmsg+0xc8/0x140 net/compat.c:364
ia32_sys_call+0x3ffa/0x41f0 arch/x86/include/generated/asm/syscalls_32.h:346
do_syscall_32_irqs_on arch/x86/entry/syscall_32.c:83 [inline]
__do_fast_syscall_32+0xb0/0x110 arch/x86/entry/syscall_32.c:306
do_fast_syscall_32+0x38/0x80 arch/x86/entry/syscall_32.c:331
do_SYSENTER_32+0x1f/0x30 arch/x86/entry/syscall_32.c:369
entry_SYSENTER_compat_after_hwframe+0x84/0x8e
CPU: 0 UID: 0 PID: 22408 Comm: syz.4.5165 Not tainted 6.15.0-rc3-syzkaller-00019-gbc3372351d0c #0 PREEMPT(undef)
Hardware name: Google Google Compute Engi
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Scrub packet on bpf_redirect_peer
When bpf_redirect_peer is used to redirect packets to a device in
another network namespace, the skb isn't scrubbed. That can lead skb
information from one namespace to be "misused" in another namespace.
As one example, this is causing Cilium to drop traffic when using
bpf_redirect_peer to redirect packets that just went through IPsec
decryption to a container namespace. The following pwru trace shows (1)
the packet path from the host's XFRM layer to the container's XFRM
layer where it's dropped and (2) the number of active skb extensions at
each function.
NETNS MARK IFACE TUPLE FUNC
4026533547 d00 eth0 10.244.3.124:35473->10.244.2.158:53 xfrm_rcv_cb
.active_extensions = (__u8)2,
4026533547 d00 eth0 10.244.3.124:35473->10.244.2.158:53 xfrm4_rcv_cb
.active_extensions = (__u8)2,
4026533547 d00 eth0 10.244.3.124:35473->10.244.2.158:53 gro_cells_receive
.active_extensions = (__u8)2,
[...]
4026533547 0 eth0 10.244.3.124:35473->10.244.2.158:53 skb_do_redirect
.active_extensions = (__u8)2,
4026534999 0 eth0 10.244.3.124:35473->10.244.2.158:53 ip_rcv
.active_extensions = (__u8)2,
4026534999 0 eth0 10.244.3.124:35473->10.244.2.158:53 ip_rcv_core
.active_extensions = (__u8)2,
[...]
4026534999 0 eth0 10.244.3.124:35473->10.244.2.158:53 udp_queue_rcv_one_skb
.active_extensions = (__u8)2,
4026534999 0 eth0 10.244.3.124:35473->10.244.2.158:53 __xfrm_policy_check
.active_extensions = (__u8)2,
4026534999 0 eth0 10.244.3.124:35473->10.244.2.158:53 __xfrm_decode_session
.active_extensions = (__u8)2,
4026534999 0 eth0 10.244.3.124:35473->10.244.2.158:53 security_xfrm_decode_session
.active_extensions = (__u8)2,
4026534999 0 eth0 10.244.3.124:35473->10.244.2.158:53 kfree_skb_reason(SKB_DROP_REASON_XFRM_POLICY)
.active_extensions = (__u8)2,
In this case, there are no XFRM policies in the container's network
namespace so the drop is unexpected. When we decrypt the IPsec packet,
the XFRM state used for decryption is set in the skb extensions. This
information is preserved across the netns switch. When we reach the
XFRM policy check in the container's netns, __xfrm_policy_check drops
the packet with LINUX_MIB_XFRMINNOPOLS because a (container-side) XFRM
policy can't be found that matches the (host-side) XFRM state used for
decryption.
This patch fixes this by scrubbing the packet when using
bpf_redirect_peer, as is done on typical netns switches via veth
devices except skb->mark and skb->tstamp are not zeroed. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/huge_memory: fix dereferencing invalid pmd migration entry
When migrating a THP, concurrent access to the PMD migration entry during
a deferred split scan can lead to an invalid address access, as
illustrated below. To prevent this invalid access, it is necessary to
check the PMD migration entry and return early. In this context, there is
no need to use pmd_to_swp_entry and pfn_swap_entry_to_page to verify the
equality of the target folio. Since the PMD migration entry is locked, it
cannot be served as the target.
Mailing list discussion and explanation from Hugh Dickins: "An anon_vma
lookup points to a location which may contain the folio of interest, but
might instead contain another folio: and weeding out those other folios is
precisely what the "folio != pmd_folio((*pmd)" check (and the "risk of
replacing the wrong folio" comment a few lines above it) is for."
BUG: unable to handle page fault for address: ffffea60001db008
CPU: 0 UID: 0 PID: 2199114 Comm: tee Not tainted 6.14.0+ #4 NONE
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
RIP: 0010:split_huge_pmd_locked+0x3b5/0x2b60
Call Trace:
<TASK>
try_to_migrate_one+0x28c/0x3730
rmap_walk_anon+0x4f6/0x770
unmap_folio+0x196/0x1f0
split_huge_page_to_list_to_order+0x9f6/0x1560
deferred_split_scan+0xac5/0x12a0
shrinker_debugfs_scan_write+0x376/0x470
full_proxy_write+0x15c/0x220
vfs_write+0x2fc/0xcb0
ksys_write+0x146/0x250
do_syscall_64+0x6a/0x120
entry_SYSCALL_64_after_hwframe+0x76/0x7e
The bug is found by syzkaller on an internal kernel, then confirmed on
upstream. |
| Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') vulnerability in Select-Themes Stockholm stockholm allows Stored XSS.This issue affects Stockholm: from n/a through <= 9.14.1. |
| Cross-Site Request Forgery (CSRF) vulnerability in Meks Meks Quick Plugin Disabler meks-quick-plugin-disabler allows Cross Site Request Forgery.This issue affects Meks Quick Plugin Disabler: from n/a through <= 1.0. |
| Missing Authorization vulnerability in merkulove Modalier for Elementor modalier-elementor allows Exploiting Incorrectly Configured Access Control Security Levels.This issue affects Modalier for Elementor: from n/a through <= 1.0.6. |
| Early versions of Operator-SDK provided an insecure method to allow operator containers to run in environments that used a random UID. Operator-SDK before 0.15.2 provided a script, user_setup, which modifies the permissions of the /etc/passwd file to 664 during build time. Developers who used Operator-SDK before 0.15.2 to scaffold their operator may still be impacted by this if the insecure user_setup script is still being used to build new container images.
In affected images, the /etc/passwd file is created during build time with group-writable permissions and a group ownership of root (gid=0). An attacker who can execute commands within an affected container, even as a non-root user, may be able to leverage their membership in the root group to modify the /etc/passwd file. This could allow the attacker to add a new user with any arbitrary UID, including UID 0, leading to full root privileges within the container. |
| In the Linux kernel, the following vulnerability has been resolved:
qibfs: fix _another_ leak
failure to allocate inode => leaked dentry...
this one had been there since the initial merge; to be fair,
if we are that far OOM, the odds of failing at that particular
allocation are low... |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: wl1251: fix memory leak in wl1251_tx_work
The skb dequeued from tx_queue is lost when wl1251_ps_elp_wakeup fails
with a -ETIMEDOUT error. Fix that by queueing the skb back to tx_queue. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: qcom: Fix sc7280 lpass potential buffer overflow
Case values introduced in commit
5f78e1fb7a3e ("ASoC: qcom: Add driver support for audioreach solution")
cause out of bounds access in arrays of sc7280 driver data (e.g. in case
of RX_CODEC_DMA_RX_0 in sc7280_snd_hw_params()).
Redefine LPASS_MAX_PORTS to consider the maximum possible port id for
q6dsp as sc7280 driver utilizes some of those values.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
Input: mtk-pmic-keys - fix possible null pointer dereference
In mtk_pmic_keys_probe, the regs parameter is only set if the button is
parsed in the device tree. However, on hardware where the button is left
floating, that node will most likely be removed not to enable that
input. In that case the code will try to dereference a null pointer.
Let's use the regs struct instead as it is defined for all supported
platforms. Note that it is ok setting the key reg even if that latter is
disabled as the interrupt won't be enabled anyway. |
| In the Linux kernel, the following vulnerability has been resolved:
iio: imu: st_lsm6dsx: fix possible lockup in st_lsm6dsx_read_fifo
Prevent st_lsm6dsx_read_fifo from falling in an infinite loop in case
pattern_len is equal to zero and the device FIFO is not empty. |
| In the Linux kernel, the following vulnerability has been resolved:
iio: imu: st_lsm6dsx: fix possible lockup in st_lsm6dsx_read_tagged_fifo
Prevent st_lsm6dsx_read_tagged_fifo from falling in an infinite loop in
case pattern_len is equal to zero and the device FIFO is not empty. |
| In the Linux kernel, the following vulnerability has been resolved:
iio: light: opt3001: fix deadlock due to concurrent flag access
The threaded IRQ function in this driver is reading the flag twice: once to
lock a mutex and once to unlock it. Even though the code setting the flag
is designed to prevent it, there are subtle cases where the flag could be
true at the mutex_lock stage and false at the mutex_unlock stage. This
results in the mutex not being unlocked, resulting in a deadlock.
Fix it by making the opt3001_irq() code generally more robust, reading the
flag into a variable and using the variable value at both stages. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: typec: ucsi: displayport: Fix deadlock
This patch introduces the ucsi_con_mutex_lock / ucsi_con_mutex_unlock
functions to the UCSI driver. ucsi_con_mutex_lock ensures the connector
mutex is only locked if a connection is established and the partner pointer
is valid. This resolves a deadlock scenario where
ucsi_displayport_remove_partner holds con->mutex waiting for
dp_altmode_work to complete while dp_altmode_work attempts to acquire it. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/mm: Eliminate window where TLB flushes may be inadvertently skipped
tl;dr: There is a window in the mm switching code where the new CR3 is
set and the CPU should be getting TLB flushes for the new mm. But
should_flush_tlb() has a bug and suppresses the flush. Fix it by
widening the window where should_flush_tlb() sends an IPI.
Long Version:
=== History ===
There were a few things leading up to this.
First, updating mm_cpumask() was observed to be too expensive, so it was
made lazier. But being lazy caused too many unnecessary IPIs to CPUs
due to the now-lazy mm_cpumask(). So code was added to cull
mm_cpumask() periodically[2]. But that culling was a bit too aggressive
and skipped sending TLB flushes to CPUs that need them. So here we are
again.
=== Problem ===
The too-aggressive code in should_flush_tlb() strikes in this window:
// Turn on IPIs for this CPU/mm combination, but only
// if should_flush_tlb() agrees:
cpumask_set_cpu(cpu, mm_cpumask(next));
next_tlb_gen = atomic64_read(&next->context.tlb_gen);
choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
load_new_mm_cr3(need_flush);
// ^ After 'need_flush' is set to false, IPIs *MUST*
// be sent to this CPU and not be ignored.
this_cpu_write(cpu_tlbstate.loaded_mm, next);
// ^ Not until this point does should_flush_tlb()
// become true!
should_flush_tlb() will suppress TLB flushes between load_new_mm_cr3()
and writing to 'loaded_mm', which is a window where they should not be
suppressed. Whoops.
=== Solution ===
Thankfully, the fuzzy "just about to write CR3" window is already marked
with loaded_mm==LOADED_MM_SWITCHING. Simply checking for that state in
should_flush_tlb() is sufficient to ensure that the CPU is targeted with
an IPI.
This will cause more TLB flush IPIs. But the window is relatively small
and I do not expect this to cause any kind of measurable performance
impact.
Update the comment where LOADED_MM_SWITCHING is written since it grew
yet another user.
Peter Z also raised a concern that should_flush_tlb() might not observe
'loaded_mm' and 'is_lazy' in the same order that switch_mm_irqs_off()
writes them. Add a barrier to ensure that they are observed in the
order they are written. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: bpf: Only mitigate cBPF programs loaded by unprivileged users
Support for eBPF programs loaded by unprivileged users is typically
disabled. This means only cBPF programs need to be mitigated for BHB.
In addition, only mitigate cBPF programs that were loaded by an
unprivileged user. Privileged users can also load the same program
via eBPF, making the mitigation pointless. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix memory leak in parse_lease_state()
The previous patch that added bounds check for create lease context
introduced a memory leak. When the bounds check fails, the function
returns NULL without freeing the previously allocated lease_ctx_info
structure.
This patch fixes the issue by adding kfree(lreq) before returning NULL
in both boundary check cases. |