| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Early versions of Operator-SDK provided an insecure method to allow operator containers to run in environments that used a random UID. Operator-SDK before 0.15.2 provided a script, user_setup, which modifies the permissions of the /etc/passwd file to 664 during build time. Developers who used Operator-SDK before 0.15.2 to scaffold their operator may still be impacted by this if the insecure user_setup script is still being used to build new container images.
In affected images, the /etc/passwd file is created during build time with group-writable permissions and a group ownership of root (gid=0). An attacker who can execute commands within an affected container, even as a non-root user, may be able to leverage their membership in the root group to modify the /etc/passwd file. This could allow the attacker to add a new user with any arbitrary UID, including UID 0, leading to full root privileges within the container. |
| n8n is an open source workflow automation platform. Prior to version 2.0.0, in self-hosted n8n instances where the Code node runs in legacy (non-task-runner) JavaScript execution mode, authenticated users with workflow editing access can invoke internal helper functions from within the Code node. This allows a workflow editor to perform actions on the n8n host with the same privileges as the n8n process, including: reading files from the host filesystem (subject to any file-access restrictions configured on the instance and OS/container permissions), and writing files to the host filesystem (subject to the same restrictions). This issue has been patched in version 2.0.0. Workarounds for this issue involve limiting file operations by setting N8N_RESTRICT_FILE_ACCESS_TO to a dedicated directory (e.g., ~/.n8n-files) and ensure it contains no sensitive data, keeping N8N_BLOCK_FILE_ACCESS_TO_N8N_FILES=true (default) to block access to .n8n and user-defined config files, and disabling high-risk nodes (including the Code node) using NODES_EXCLUDE if workflow editors are not fully trusted. |
| n8n is an open source workflow automation platform. From version 1.0.0 to before 2.0.0, a sandbox bypass vulnerability exists in the Python Code Node that uses Pyodide. An authenticated user with permission to create or modify workflows can exploit this vulnerability to execute arbitrary commands on the host system running n8n, using the same privileges as the n8n process. This issue has been patched in version 2.0.0. Workarounds for this issue involve disabling the Code Node by setting the environment variable NODES_EXCLUDE: "[\"n8n-nodes-base.code\"]", disabling Python support in the Code node by setting the environment variable N8N_PYTHON_ENABLED=false, which was introduced in n8n version 1.104.0, and configuring n8n to use the task runner based Python sandbox via the N8N_RUNNERS_ENABLED and N8N_NATIVE_PYTHON_RUNNER environment variables. |
| LMDeploy is a toolkit for compressing, deploying, and serving LLMs. Prior to version 0.11.1, an insecure deserialization vulnerability exists in lmdeploy where torch.load() is called without the weights_only=True parameter when loading model checkpoint files. This allows an attacker to execute arbitrary code on the victim's machine when they load a malicious .bin or .pt model file. This issue has been patched in version 0.11.1. |
| Datasette is an open source multi-tool for exploring and publishing data. In versions 0.65.1 and below and 1.0a0 through 1.0a19, deployed instances of Datasette include an open redirect vulnerability. Hits to the path //example.com/foo/bar/ (the trailing slash is required) will redirect the user to https://example.com/foo/bar. This problem has been patched in both Datasette 0.65.2 and 1.0a21. To workaround this issue, if Datasette is running behind a proxy, that proxy could be configured to replace // with / in incoming request URLs. |
| n8n is an open source workflow automation platform. Prior to version 1.114.0, a stored Cross-Site Scripting (XSS) vulnerability may occur in n8n when using the “Respond to Webhook” node. When this node responds with HTML content containing executable scripts, the payload may execute directly in the top-level window, rather than within the expected sandbox introduced in version 1.103.0. This behavior can enable a malicious actor with workflow creation permissions to execute arbitrary JavaScript in the context of the n8n editor interface. This issue has been patched in version 1.114.0. Workarounds for this issue involve restricting workflow creation and modification privileges to trusted users only, avoiding use of untrusted HTML responses in the “Respond to Webhook” node, and using an external reverse proxy or HTML sanitizer to filter responses that include executable scripts. |
| Conduit is a chat server powered by Matrix. A vulnerability that affects a number of Conduit-derived homeservers allows a remote, unauthenticated attacker to force the target server to cryptographically sign arbitrary membership events. Affected products include Conduit prior to version 0.10.10, continuwuity prior to version 0.5.0, Grapevine prior to commit `9a50c244`, and tuwunel prior to version 1.4.8. The flaw exists because the server fails to validate the origin of a signing request, provided the event's state_key is a valid user ID belonging to the target server. Attackers can forge "leave" events for any user on the target server. This forcibly removes users (including admins and bots) from rooms. This allows denial of service and/or the removal of technical protections for a room (including policy servers, if all users on the policy server are removed). Attackers can forge "invite" events from a victim user to themselves, provided they have an account on a server where there is an account that has the power level to send invites. This allows the attacker to join private or invite-only rooms accessible by the victim, exposing confidential conversation history and room state. Attackers can forge "ban" events from a victim user to any user below the victim user's power level, provided the victim has the power level to issue bans AND the target of the ban resides on the same server as the victim. This allows the attacker to ban anyone in a room who is on the same server as the vulnerable one, however cannot exploit this to ban users on other servers or the victim themself. Conduit fixes the issue in version 0.10.10. continuwuity fixes the issue in commits `7fa4fa98` and `b2bead67`, released in 0.5.0. tuwunel fixes the issue in commit `dc9314de1f8a6e040c5aa331fe52efbe62e6a2c3`, released in 1.4.8. Grapevine fixes the issue in commit `9a50c2448abba6e2b7d79c64243bb438b351616c`. As a workaround, block access to the `PUT /_matrix/federation/v2/invite/{roomId}/{eventId}` endpoint using your reverse proxy. |
| GNU Barcode 0.99 contains a memory leak vulnerability in the command line processing function within cmdline.c. Attackers can exploit this vulnerability by providing specially crafted input that causes unfreed memory allocations, potentially leading to denial of service conditions. |
| RealDefense SUPERAntiSpyware Exposed Dangerous Function Local Privilege Escalation Vulnerability. This vulnerability allows local attackers to escalate privileges on affected installations of RealDefense SUPERAntiSpyware. An attacker must first obtain the ability to execute low-privileged code on the target system in order to exploit this vulnerability.
The specific flaw exists within the SAS Core Service. The issue results from an exposed dangerous function. An attacker can leverage this vulnerability to escalate privileges and execute arbitrary code in the context of SYSTEM. Was ZDI-CAN-27657. |
| RealDefense SUPERAntiSpyware Exposed Dangerous Function Local Privilege Escalation Vulnerability. This vulnerability allows local attackers to escalate privileges on affected installations of RealDefense SUPERAntiSpyware. An attacker must first obtain the ability to execute low-privileged code on the target system in order to exploit this vulnerability.
The specific flaw exists within the SAS Core Service. The issue results from an exposed dangerous function. An attacker can leverage this vulnerability to escalate privileges and execute arbitrary code in the context of SYSTEM. Was ZDI-CAN-27680. |
| RealDefense SUPERAntiSpyware Exposed Dangerous Function Local Privilege Escalation Vulnerability. This vulnerability allows local attackers to escalate privileges on affected installations of RealDefense SUPERAntiSpyware. An attacker must first obtain the ability to execute low-privileged code on the target system in order to exploit this vulnerability.
The specific flaw exists within the SAS Core Service. The issue results from an exposed dangerous function. An attacker can leverage this vulnerability to escalate privileges and execute arbitrary code in the context of SYSTEM. Was ZDI-CAN-27677. |
| RealDefense SUPERAntiSpyware Exposed Dangerous Function Local Privilege Escalation Vulnerability. This vulnerability allows local attackers to escalate privileges on affected installations of RealDefense SUPERAntiSpyware. An attacker must first obtain the ability to execute low-privileged code on the target system in order to exploit this vulnerability.
The specific flaw exists within the SAS Core Service. The issue results from an exposed dangerous function. An attacker can leverage this vulnerability to escalate privileges and execute arbitrary code in the context of SYSTEM. Was ZDI-CAN-27675. |
| RealDefense SUPERAntiSpyware Exposed Dangerous Function Local Privilege Escalation Vulnerability. This vulnerability allows local attackers to escalate privileges on affected installations of RealDefense SUPERAntiSpyware. An attacker must first obtain the ability to execute low-privileged code on the target system in order to exploit this vulnerability.
The specific flaw exists within the SAS Core Service. The issue results from an exposed dangerous function. An attacker can leverage this vulnerability to escalate privileges and execute arbitrary code in the context of SYSTEM. Was ZDI-CAN-27678. |
| RealDefense SUPERAntiSpyware Exposed Dangerous Function Local Privilege Escalation Vulnerability. This vulnerability allows local attackers to escalate privileges on affected installations of RealDefense SUPERAntiSpyware. An attacker must first obtain the ability to execute low-privileged code on the target system in order to exploit this vulnerability.
The specific flaw exists within the SAS Core Service. The issue results from an exposed dangerous function. An attacker can leverage this vulnerability to escalate privileges and execute arbitrary code in the context of SYSTEM. Was ZDI-CAN-27668. |
| NSF Unidata NetCDF-C Time Unit Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of NSF Unidata NetCDF-C. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of time units. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current user. Was ZDI-CAN-27273. |
| NSF Unidata NetCDF-C NC Variable Integer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of NSF Unidata NetCDF-C. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of NC variables. The issue results from the lack of proper validation of user-supplied data, which can result in an integer overflow before allocating a buffer. An attacker can leverage this vulnerability to execute code in the context of the current user. Was ZDI-CAN-27266. |
| NSF Unidata NetCDF-C Variable Name Stack-based Buffer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of NSF Unidata NetCDF-C. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of variable names. The issue results from the lack of proper validation of the length of user-supplied data prior to copying it to a fixed-length stack-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current user. Was ZDI-CAN-27267. |
| A weakness has been identified in sunkaifei FlyCMS up to abbaa5a8daefb146ad4d61027035026b052cb414. The impacted element is the function userLogin of the file src/main/java/com/flycms/web/front/UserController.java of the component User Login. Executing manipulation of the argument redirectUrl can lead to cross site scripting. The attack can be launched remotely. The exploit has been made available to the public and could be exploited. This product does not use versioning. This is why information about affected and unaffected releases are unavailable. The project was informed of the problem early through an issue report but has not responded yet. |
| A security vulnerability has been detected in postmanlabs httpbin up to 0.6.1. This affects an unknown function of the file httpbin-master/httpbin/core.py. The manipulation leads to cross site scripting. The attack may be initiated remotely. The exploit has been disclosed publicly and may be used. The project was informed of the problem early through an issue report but has not responded yet. |
| Gitea before 1.22.3 mishandles access to a private resource upon receiving an API token with scope limited to public resources. |