| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Early versions of Operator-SDK provided an insecure method to allow operator containers to run in environments that used a random UID. Operator-SDK before 0.15.2 provided a script, user_setup, which modifies the permissions of the /etc/passwd file to 664 during build time. Developers who used Operator-SDK before 0.15.2 to scaffold their operator may still be impacted by this if the insecure user_setup script is still being used to build new container images.
In affected images, the /etc/passwd file is created during build time with group-writable permissions and a group ownership of root (gid=0). An attacker who can execute commands within an affected container, even as a non-root user, may be able to leverage their membership in the root group to modify the /etc/passwd file. This could allow the attacker to add a new user with any arbitrary UID, including UID 0, leading to full root privileges within the container. |
| DO NOT USE THIS CANDIDATE NUMBER. ConsultIDs: none. Reason: This candidate was withdrawn by its CNA. Further investigation showed that it was not a security issue. Notes: none. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: Fix PTP NULL pointer dereference during VSI rebuild
Fix race condition where PTP periodic work runs while VSI is being
rebuilt, accessing NULL vsi->rx_rings.
The sequence was:
1. ice_ptp_prepare_for_reset() cancels PTP work
2. ice_ptp_rebuild() immediately queues PTP work
3. VSI rebuild happens AFTER ice_ptp_rebuild()
4. PTP work runs and accesses NULL vsi->rx_rings
Fix: Keep PTP work cancelled during rebuild, only queue it after
VSI rebuild completes in ice_rebuild().
Added ice_ptp_queue_work() helper function to encapsulate the logic
for queuing PTP work, ensuring it's only queued when PTP is supported
and the state is ICE_PTP_READY.
Error log:
[ 121.392544] ice 0000:60:00.1: PTP reset successful
[ 121.392692] BUG: kernel NULL pointer dereference, address: 0000000000000000
[ 121.392712] #PF: supervisor read access in kernel mode
[ 121.392720] #PF: error_code(0x0000) - not-present page
[ 121.392727] PGD 0
[ 121.392734] Oops: Oops: 0000 [#1] SMP NOPTI
[ 121.392746] CPU: 8 UID: 0 PID: 1005 Comm: ice-ptp-0000:60 Tainted: G S 6.19.0-rc6+ #4 PREEMPT(voluntary)
[ 121.392761] Tainted: [S]=CPU_OUT_OF_SPEC
[ 121.392773] RIP: 0010:ice_ptp_update_cached_phctime+0xbf/0x150 [ice]
[ 121.393042] Call Trace:
[ 121.393047] <TASK>
[ 121.393055] ice_ptp_periodic_work+0x69/0x180 [ice]
[ 121.393202] kthread_worker_fn+0xa2/0x260
[ 121.393216] ? __pfx_ice_ptp_periodic_work+0x10/0x10 [ice]
[ 121.393359] ? __pfx_kthread_worker_fn+0x10/0x10
[ 121.393371] kthread+0x10d/0x230
[ 121.393382] ? __pfx_kthread+0x10/0x10
[ 121.393393] ret_from_fork+0x273/0x2b0
[ 121.393407] ? __pfx_kthread+0x10/0x10
[ 121.393417] ret_from_fork_asm+0x1a/0x30
[ 121.393432] </TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
macvlan: fix error recovery in macvlan_common_newlink()
valis provided a nice repro to crash the kernel:
ip link add p1 type veth peer p2
ip link set address 00:00:00:00:00:20 dev p1
ip link set up dev p1
ip link set up dev p2
ip link add mv0 link p2 type macvlan mode source
ip link add invalid% link p2 type macvlan mode source macaddr add 00:00:00:00:00:20
ping -c1 -I p1 1.2.3.4
He also gave a very detailed analysis:
<quote valis>
The issue is triggered when a new macvlan link is created with
MACVLAN_MODE_SOURCE mode and MACVLAN_MACADDR_ADD (or
MACVLAN_MACADDR_SET) parameter, lower device already has a macvlan
port and register_netdevice() called from macvlan_common_newlink()
fails (e.g. because of the invalid link name).
In this case macvlan_hash_add_source is called from
macvlan_change_sources() / macvlan_common_newlink():
This adds a reference to vlan to the port's vlan_source_hash using
macvlan_source_entry.
vlan is a pointer to the priv data of the link that is being created.
When register_netdevice() fails, the error is returned from
macvlan_newlink() to rtnl_newlink_create():
if (ops->newlink)
err = ops->newlink(dev, ¶ms, extack);
else
err = register_netdevice(dev);
if (err < 0) {
free_netdev(dev);
goto out;
}
and free_netdev() is called, causing a kvfree() on the struct
net_device that is still referenced in the source entry attached to
the lower device's macvlan port.
Now all packets sent on the macvlan port with a matching source mac
address will trigger a use-after-free in macvlan_forward_source().
</quote valis>
With all that, my fix is to make sure we call macvlan_flush_sources()
regardless of @create value whenever "goto destroy_macvlan_port;"
path is taken.
Many thanks to valis for following up on this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-audio: Prevent excessive number of frames
In this case, the user constructed the parameters with maxpacksize 40
for rate 22050 / pps 1000, and packsize[0] 22 packsize[1] 23. The buffer
size for each data URB is maxpacksize * packets, which in this example
is 40 * 6 = 240; When the user performs a write operation to send audio
data into the ALSA PCM playback stream, the calculated number of frames
is packsize[0] * packets = 264, which exceeds the allocated URB buffer
size, triggering the out-of-bounds (OOB) issue reported by syzbot [1].
Added a check for the number of single data URB frames when calculating
the number of frames to prevent [1].
[1]
BUG: KASAN: slab-out-of-bounds in copy_to_urb+0x261/0x460 sound/usb/pcm.c:1487
Write of size 264 at addr ffff88804337e800 by task syz.0.17/5506
Call Trace:
copy_to_urb+0x261/0x460 sound/usb/pcm.c:1487
prepare_playback_urb+0x953/0x13d0 sound/usb/pcm.c:1611
prepare_outbound_urb+0x377/0xc50 sound/usb/endpoint.c:333 |
| In the Linux kernel, the following vulnerability has been resolved:
spi: tegra210-quad: Protect curr_xfer check in IRQ handler
Now that all other accesses to curr_xfer are done under the lock,
protect the curr_xfer NULL check in tegra_qspi_isr_thread() with the
spinlock. Without this protection, the following race can occur:
CPU0 (ISR thread) CPU1 (timeout path)
---------------- -------------------
if (!tqspi->curr_xfer)
// sees non-NULL
spin_lock()
tqspi->curr_xfer = NULL
spin_unlock()
handle_*_xfer()
spin_lock()
t = tqspi->curr_xfer // NULL!
... t->len ... // NULL dereference!
With this patch, all curr_xfer accesses are now properly synchronized.
Although all accesses to curr_xfer are done under the lock, in
tegra_qspi_isr_thread() it checks for NULL, releases the lock and
reacquires it later in handle_cpu_based_xfer()/handle_dma_based_xfer().
There is a potential for an update in between, which could cause a NULL
pointer dereference.
To handle this, add a NULL check inside the handlers after acquiring
the lock. This ensures that if the timeout path has already cleared
curr_xfer, the handler will safely return without dereferencing the
NULL pointer. |
| In the Linux kernel, the following vulnerability has been resolved:
dpaa2-switch: prevent ZERO_SIZE_PTR dereference when num_ifs is zero
The driver allocates arrays for ports, FDBs, and filter blocks using
kcalloc() with ethsw->sw_attr.num_ifs as the element count. When the
device reports zero interfaces (either due to hardware configuration
or firmware issues), kcalloc(0, ...) returns ZERO_SIZE_PTR (0x10)
instead of NULL.
Later in dpaa2_switch_probe(), the NAPI initialization unconditionally
accesses ethsw->ports[0]->netdev, which attempts to dereference
ZERO_SIZE_PTR (address 0x10), resulting in a kernel panic.
Add a check to ensure num_ifs is greater than zero after retrieving
device attributes. This prevents the zero-sized allocations and
subsequent invalid pointer dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
smb/client: fix memory leak in smb2_open_file()
Reproducer:
1. server: directories are exported read-only
2. client: mount -t cifs //${server_ip}/export /mnt
3. client: dd if=/dev/zero of=/mnt/file bs=512 count=1000 oflag=direct
4. client: umount /mnt
5. client: sleep 1
6. client: modprobe -r cifs
The error message is as follows:
=============================================================================
BUG cifs_small_rq (Not tainted): Objects remaining on __kmem_cache_shutdown()
-----------------------------------------------------------------------------
Object 0x00000000d47521be @offset=14336
...
WARNING: mm/slub.c:1251 at __kmem_cache_shutdown+0x34e/0x440, CPU#0: modprobe/1577
...
Call Trace:
<TASK>
kmem_cache_destroy+0x94/0x190
cifs_destroy_request_bufs+0x3e/0x50 [cifs]
cleanup_module+0x4e/0x540 [cifs]
__se_sys_delete_module+0x278/0x400
__x64_sys_delete_module+0x5f/0x70
x64_sys_call+0x2299/0x2ff0
do_syscall_64+0x89/0x350
entry_SYSCALL_64_after_hwframe+0x76/0x7e
...
kmem_cache_destroy cifs_small_rq: Slab cache still has objects when called from cifs_destroy_request_bufs+0x3e/0x50 [cifs]
WARNING: mm/slab_common.c:532 at kmem_cache_destroy+0x16b/0x190, CPU#0: modprobe/1577 |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: cls_u32: use skb_header_pointer_careful()
skb_header_pointer() does not fully validate negative @offset values.
Use skb_header_pointer_careful() instead.
GangMin Kim provided a report and a repro fooling u32_classify():
BUG: KASAN: slab-out-of-bounds in u32_classify+0x1180/0x11b0
net/sched/cls_u32.c:221 |
| In the Linux kernel, the following vulnerability has been resolved:
net: cpsw_new: Execute ndo_set_rx_mode callback in a work queue
Commit 1767bb2d47b7 ("ipv6: mcast: Don't hold RTNL for
IPV6_ADD_MEMBERSHIP and MCAST_JOIN_GROUP.") removed the RTNL lock for
IPV6_ADD_MEMBERSHIP and MCAST_JOIN_GROUP operations. However, this
change triggered the following call trace on my BeagleBone Black board:
WARNING: net/8021q/vlan_core.c:236 at vlan_for_each+0x120/0x124, CPU#0: rpcbind/496
RTNL: assertion failed at net/8021q/vlan_core.c (236)
Modules linked in:
CPU: 0 UID: 997 PID: 496 Comm: rpcbind Not tainted 6.19.0-rc6-next-20260122-yocto-standard+ #8 PREEMPT
Hardware name: Generic AM33XX (Flattened Device Tree)
Call trace:
unwind_backtrace from show_stack+0x28/0x2c
show_stack from dump_stack_lvl+0x30/0x38
dump_stack_lvl from __warn+0xb8/0x11c
__warn from warn_slowpath_fmt+0x130/0x194
warn_slowpath_fmt from vlan_for_each+0x120/0x124
vlan_for_each from cpsw_add_mc_addr+0x54/0xd8
cpsw_add_mc_addr from __hw_addr_ref_sync_dev+0xc4/0xec
__hw_addr_ref_sync_dev from __dev_mc_add+0x78/0x88
__dev_mc_add from igmp6_group_added+0x84/0xec
igmp6_group_added from __ipv6_dev_mc_inc+0x1fc/0x2f0
__ipv6_dev_mc_inc from __ipv6_sock_mc_join+0x124/0x1b4
__ipv6_sock_mc_join from do_ipv6_setsockopt+0x84c/0x1168
do_ipv6_setsockopt from ipv6_setsockopt+0x88/0xc8
ipv6_setsockopt from do_sock_setsockopt+0xe8/0x19c
do_sock_setsockopt from __sys_setsockopt+0x84/0xac
__sys_setsockopt from ret_fast_syscall+0x0/0x5
This trace occurs because vlan_for_each() is called within
cpsw_ndo_set_rx_mode(), which expects the RTNL lock to be held.
Since modifying vlan_for_each() to operate without the RTNL lock is not
straightforward, and because ndo_set_rx_mode() is invoked both with and
without the RTNL lock across different code paths, simply adding
rtnl_lock() in cpsw_ndo_set_rx_mode() is not a viable solution.
To resolve this issue, we opt to execute the actual processing within
a work queue, following the approach used by the icssg-prueth driver. |
| In the Linux kernel, the following vulnerability has been resolved:
spi: tegra210-quad: Protect curr_xfer in tegra_qspi_combined_seq_xfer
The curr_xfer field is read by the IRQ handler without holding the lock
to check if a transfer is in progress. When clearing curr_xfer in the
combined sequence transfer loop, protect it with the spinlock to prevent
a race with the interrupt handler.
Protect the curr_xfer clearing at the exit path of
tegra_qspi_combined_seq_xfer() with the spinlock to prevent a race
with the interrupt handler that reads this field.
Without this protection, the IRQ handler could read a partially updated
curr_xfer value, leading to NULL pointer dereference or use-after-free. |
| In the Linux kernel, the following vulnerability has been resolved:
ceph: fix oops due to invalid pointer for kfree() in parse_longname()
This fixes a kernel oops when reading ceph snapshot directories (.snap),
for example by simply running `ls /mnt/my_ceph/.snap`.
The variable str is guarded by __free(kfree), but advanced by one for
skipping the initial '_' in snapshot names. Thus, kfree() is called
with an invalid pointer. This patch removes the need for advancing the
pointer so kfree() is called with correct memory pointer.
Steps to reproduce:
1. Create snapshots on a cephfs volume (I've 63 snaps in my testcase)
2. Add cephfs mount to fstab
$ echo "samba-fileserver@.files=/volumes/datapool/stuff/3461082b-ecc9-4e82-8549-3fd2590d3fb6 /mnt/test/stuff ceph acl,noatime,_netdev 0 0" >> /etc/fstab
3. Reboot the system
$ systemctl reboot
4. Check if it's really mounted
$ mount | grep stuff
5. List snapshots (expected 63 snapshots on my system)
$ ls /mnt/test/stuff/.snap
Now ls hangs forever and the kernel log shows the oops. |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: Fix ECMP sibling count mismatch when clearing RTF_ADDRCONF
syzbot reported a kernel BUG in fib6_add_rt2node() when adding an IPv6
route. [0]
Commit f72514b3c569 ("ipv6: clear RA flags when adding a static
route") introduced logic to clear RTF_ADDRCONF from existing routes
when a static route with the same nexthop is added. However, this
causes a problem when the existing route has a gateway.
When RTF_ADDRCONF is cleared from a route that has a gateway, that
route becomes eligible for ECMP, i.e. rt6_qualify_for_ecmp() returns
true. The issue is that this route was never added to the
fib6_siblings list.
This leads to a mismatch between the following counts:
- The sibling count computed by iterating fib6_next chain, which
includes the newly ECMP-eligible route
- The actual siblings in fib6_siblings list, which does not include
that route
When a subsequent ECMP route is added, fib6_add_rt2node() hits
BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings) because the
counts don't match.
Fix this by only clearing RTF_ADDRCONF when the existing route does
not have a gateway. Routes without a gateway cannot qualify for ECMP
anyway (rt6_qualify_for_ecmp() requires fib_nh_gw_family), so clearing
RTF_ADDRCONF on them is safe and matches the original intent of the
commit.
[0]:
kernel BUG at net/ipv6/ip6_fib.c:1217!
Oops: invalid opcode: 0000 [#1] SMP KASAN PTI
CPU: 0 UID: 0 PID: 6010 Comm: syz.0.17 Not tainted syzkaller #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/25/2025
RIP: 0010:fib6_add_rt2node+0x3433/0x3470 net/ipv6/ip6_fib.c:1217
[...]
Call Trace:
<TASK>
fib6_add+0x8da/0x18a0 net/ipv6/ip6_fib.c:1532
__ip6_ins_rt net/ipv6/route.c:1351 [inline]
ip6_route_add+0xde/0x1b0 net/ipv6/route.c:3946
ipv6_route_ioctl+0x35c/0x480 net/ipv6/route.c:4571
inet6_ioctl+0x219/0x280 net/ipv6/af_inet6.c:577
sock_do_ioctl+0xdc/0x300 net/socket.c:1245
sock_ioctl+0x576/0x790 net/socket.c:1366
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:597 [inline]
__se_sys_ioctl+0xfc/0x170 fs/ioctl.c:583
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0xf80 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f |
| In the Linux kernel, the following vulnerability has been resolved:
procfs: avoid fetching build ID while holding VMA lock
Fix PROCMAP_QUERY to fetch optional build ID only after dropping mmap_lock
or per-VMA lock, whichever was used to lock VMA under question, to avoid
deadlock reported by syzbot:
-> #1 (&mm->mmap_lock){++++}-{4:4}:
__might_fault+0xed/0x170
_copy_to_iter+0x118/0x1720
copy_page_to_iter+0x12d/0x1e0
filemap_read+0x720/0x10a0
blkdev_read_iter+0x2b5/0x4e0
vfs_read+0x7f4/0xae0
ksys_read+0x12a/0x250
do_syscall_64+0xcb/0xf80
entry_SYSCALL_64_after_hwframe+0x77/0x7f
-> #0 (&sb->s_type->i_mutex_key#8){++++}-{4:4}:
__lock_acquire+0x1509/0x26d0
lock_acquire+0x185/0x340
down_read+0x98/0x490
blkdev_read_iter+0x2a7/0x4e0
__kernel_read+0x39a/0xa90
freader_fetch+0x1d5/0xa80
__build_id_parse.isra.0+0xea/0x6a0
do_procmap_query+0xd75/0x1050
procfs_procmap_ioctl+0x7a/0xb0
__x64_sys_ioctl+0x18e/0x210
do_syscall_64+0xcb/0xf80
entry_SYSCALL_64_after_hwframe+0x77/0x7f
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
rlock(&mm->mmap_lock);
lock(&sb->s_type->i_mutex_key#8);
lock(&mm->mmap_lock);
rlock(&sb->s_type->i_mutex_key#8);
*** DEADLOCK ***
This seems to be exacerbated (as we haven't seen these syzbot reports
before that) by the recent:
777a8560fd29 ("lib/buildid: use __kernel_read() for sleepable context")
To make this safe, we need to grab file refcount while VMA is still locked, but
other than that everything is pretty straightforward. Internal build_id_parse()
API assumes VMA is passed, but it only needs the underlying file reference, so
just add another variant build_id_parse_file() that expects file passed
directly.
[akpm@linux-foundation.org: fix up kerneldoc] |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: Don't clobber irqfd routing type when deassigning irqfd
When deassigning a KVM_IRQFD, don't clobber the irqfd's copy of the IRQ's
routing entry as doing so breaks kvm_arch_irq_bypass_del_producer() on x86
and arm64, which explicitly look for KVM_IRQ_ROUTING_MSI. Instead, to
handle a concurrent routing update, verify that the irqfd is still active
before consuming the routing information. As evidenced by the x86 and
arm64 bugs, and another bug in kvm_arch_update_irqfd_routing() (see below),
clobbering the entry type without notifying arch code is surprising and
error prone.
As a bonus, checking that the irqfd is active provides a convenient
location for documenting _why_ KVM must not consume the routing entry for
an irqfd that is in the process of being deassigned: once the irqfd is
deleted from the list (which happens *before* the eventfd is detached), it
will no longer receive updates via kvm_irq_routing_update(), and so KVM
could deliver an event using stale routing information (relative to
KVM_SET_GSI_ROUTING returning to userspace).
As an even better bonus, explicitly checking for the irqfd being active
fixes a similar bug to the one the clobbering is trying to prevent: if an
irqfd is deactivated, and then its routing is changed,
kvm_irq_routing_update() won't invoke kvm_arch_update_irqfd_routing()
(because the irqfd isn't in the list). And so if the irqfd is in bypass
mode, IRQs will continue to be posted using the old routing information.
As for kvm_arch_irq_bypass_del_producer(), clobbering the routing type
results in KVM incorrectly keeping the IRQ in bypass mode, which is
especially problematic on AMD as KVM tracks IRQs that are being posted to
a vCPU in a list whose lifetime is tied to the irqfd.
Without the help of KASAN to detect use-after-free, the most common
sympton on AMD is a NULL pointer deref in amd_iommu_update_ga() due to
the memory for irqfd structure being re-allocated and zeroed, resulting
in irqfd->irq_bypass_data being NULL when read by
avic_update_iommu_vcpu_affinity():
BUG: kernel NULL pointer dereference, address: 0000000000000018
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 40cf2b9067 P4D 40cf2b9067 PUD 408362a067 PMD 0
Oops: Oops: 0000 [#1] SMP
CPU: 6 UID: 0 PID: 40383 Comm: vfio_irq_test
Tainted: G U W O 6.19.0-smp--5dddc257e6b2-irqfd #31 NONE
Tainted: [U]=USER, [W]=WARN, [O]=OOT_MODULE
Hardware name: Google, Inc. Arcadia_IT_80/Arcadia_IT_80, BIOS 34.78.2-0 09/05/2025
RIP: 0010:amd_iommu_update_ga+0x19/0xe0
Call Trace:
<TASK>
avic_update_iommu_vcpu_affinity+0x3d/0x90 [kvm_amd]
__avic_vcpu_load+0xf4/0x130 [kvm_amd]
kvm_arch_vcpu_load+0x89/0x210 [kvm]
vcpu_load+0x30/0x40 [kvm]
kvm_arch_vcpu_ioctl_run+0x45/0x620 [kvm]
kvm_vcpu_ioctl+0x571/0x6a0 [kvm]
__se_sys_ioctl+0x6d/0xb0
do_syscall_64+0x6f/0x9d0
entry_SYSCALL_64_after_hwframe+0x4b/0x53
RIP: 0033:0x46893b
</TASK>
---[ end trace 0000000000000000 ]---
If AVIC is inhibited when the irfd is deassigned, the bug will manifest as
list corruption, e.g. on the next irqfd assignment.
list_add corruption. next->prev should be prev (ffff8d474d5cd588),
but was 0000000000000000. (next=ffff8d8658f86530).
------------[ cut here ]------------
kernel BUG at lib/list_debug.c:31!
Oops: invalid opcode: 0000 [#1] SMP
CPU: 128 UID: 0 PID: 80818 Comm: vfio_irq_test
Tainted: G U W O 6.19.0-smp--f19dc4d680ba-irqfd #28 NONE
Tainted: [U]=USER, [W]=WARN, [O]=OOT_MODULE
Hardware name: Google, Inc. Arcadia_IT_80/Arcadia_IT_80, BIOS 34.78.2-0 09/05/2025
RIP: 0010:__list_add_valid_or_report+0x97/0xc0
Call Trace:
<TASK>
avic_pi_update_irte+0x28e/0x2b0 [kvm_amd]
kvm_pi_update_irte+0xbf/0x190 [kvm]
kvm_arch_irq_bypass_add_producer+0x72/0x90 [kvm]
irq_bypass_register_consumer+0xcd/0x170 [irqbypa
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
i2c: imx: preserve error state in block data length handler
When a block read returns an invalid length, zero or >I2C_SMBUS_BLOCK_MAX,
the length handler sets the state to IMX_I2C_STATE_FAILED. However,
i2c_imx_master_isr() unconditionally overwrites this with
IMX_I2C_STATE_READ_CONTINUE, causing an endless read loop that overruns
buffers and crashes the system.
Guard the state transition to preserve error states set by the length
handler. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: Intel-thc-hid: Intel-thc: Add safety check for reading DMA buffer
Add DMA buffer readiness check before reading DMA buffer to avoid
unexpected NULL pointer accessing. |
| In the Linux kernel, the following vulnerability has been resolved:
cgroup/dmem: avoid pool UAF
An UAF issue was observed:
BUG: KASAN: slab-use-after-free in page_counter_uncharge+0x65/0x150
Write of size 8 at addr ffff888106715440 by task insmod/527
CPU: 4 UID: 0 PID: 527 Comm: insmod 6.19.0-rc7-next-20260129+ #11
Tainted: [O]=OOT_MODULE
Call Trace:
<TASK>
dump_stack_lvl+0x82/0xd0
kasan_report+0xca/0x100
kasan_check_range+0x39/0x1c0
page_counter_uncharge+0x65/0x150
dmem_cgroup_uncharge+0x1f/0x260
Allocated by task 527:
Freed by task 0:
The buggy address belongs to the object at ffff888106715400
which belongs to the cache kmalloc-512 of size 512
The buggy address is located 64 bytes inside of
freed 512-byte region [ffff888106715400, ffff888106715600)
The buggy address belongs to the physical page:
Memory state around the buggy address:
ffff888106715300: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
ffff888106715380: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
>ffff888106715400: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
ffff888106715480: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff888106715500: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
The issue occurs because a pool can still be held by a caller after its
associated memory region is unregistered. The current implementation frees
the pool even if users still hold references to it (e.g., before uncharge
operations complete).
This patch adds a reference counter to each pool, ensuring that a pool is
only freed when its reference count drops to zero. |
| In the Linux kernel, the following vulnerability has been resolved:
rust_binder: correctly handle FDA objects of length zero
Fix a bug where an empty FDA (fd array) object with 0 fds would cause an
out-of-bounds error. The previous implementation used `skip == 0` to
mean "this is a pointer fixup", but 0 is also the correct skip length
for an empty FDA. If the FDA is at the end of the buffer, then this
results in an attempt to write 8-bytes out of bounds. This is caught and
results in an EINVAL error being returned to userspace.
The pattern of using `skip == 0` as a special value originates from the
C-implementation of Binder. As part of fixing this bug, this pattern is
replaced with a Rust enum.
I considered the alternate option of not pushing a fixup when the length
is zero, but I think it's cleaner to just get rid of the zero-is-special
stuff.
The root cause of this bug was diagnosed by Gemini CLI on first try. I
used the following prompt:
> There appears to be a bug in @drivers/android/binder/thread.rs where
> the Fixups oob bug is triggered with 316 304 316 324. This implies
> that we somehow ended up with a fixup where buffer A has a pointer to
> buffer B, but the pointer is located at an index in buffer A that is
> out of bounds. Please investigate the code to find the bug. You may
> compare with @drivers/android/binder.c that implements this correctly. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: target: iscsi: Fix use-after-free in iscsit_dec_session_usage_count()
In iscsit_dec_session_usage_count(), the function calls complete() while
holding the sess->session_usage_lock. Similar to the connection usage count
logic, the waiter signaled by complete() (e.g., in the session release
path) may wake up and free the iscsit_session structure immediately.
This creates a race condition where the current thread may attempt to
execute spin_unlock_bh() on a session structure that has already been
deallocated, resulting in a KASAN slab-use-after-free.
To resolve this, release the session_usage_lock before calling complete()
to ensure all dereferences of the sess pointer are finished before the
waiter is allowed to proceed with deallocation. |