| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/exynos: exynos7_drm_decon: add vblank check in IRQ handling
If there's support for another console device (such as a TTY serial),
the kernel occasionally panics during boot. The panic message and a
relevant snippet of the call stack is as follows:
Unable to handle kernel NULL pointer dereference at virtual address 000000000000000
Call trace:
drm_crtc_handle_vblank+0x10/0x30 (P)
decon_irq_handler+0x88/0xb4
[...]
Otherwise, the panics don't happen. This indicates that it's some sort
of race condition.
Add a check to validate if the drm device can handle vblanks before
calling drm_crtc_handle_vblank() to avoid this. |
| In the Linux kernel, the following vulnerability has been resolved:
netlink: Fix wraparounds of sk->sk_rmem_alloc.
Netlink has this pattern in some places
if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
atomic_add(skb->truesize, &sk->sk_rmem_alloc);
, which has the same problem fixed by commit 5a465a0da13e ("udp:
Fix multiple wraparounds of sk->sk_rmem_alloc.").
For example, if we set INT_MAX to SO_RCVBUFFORCE, the condition
is always false as the two operands are of int.
Then, a single socket can eat as many skb as possible until OOM
happens, and we can see multiple wraparounds of sk->sk_rmem_alloc.
Let's fix it by using atomic_add_return() and comparing the two
variables as unsigned int.
Before:
[root@fedora ~]# ss -f netlink
Recv-Q Send-Q Local Address:Port Peer Address:Port
-1668710080 0 rtnl:nl_wraparound/293 *
After:
[root@fedora ~]# ss -f netlink
Recv-Q Send-Q Local Address:Port Peer Address:Port
2147483072 0 rtnl:nl_wraparound/290 *
^
`--- INT_MAX - 576 |
| In the Linux kernel, the following vulnerability has been resolved:
tipc: Fix use-after-free in tipc_conn_close().
syzbot reported a null-ptr-deref in tipc_conn_close() during netns
dismantle. [0]
tipc_topsrv_stop() iterates tipc_net(net)->topsrv->conn_idr and calls
tipc_conn_close() for each tipc_conn.
The problem is that tipc_conn_close() is called after releasing the
IDR lock.
At the same time, there might be tipc_conn_recv_work() running and it
could call tipc_conn_close() for the same tipc_conn and release its
last ->kref.
Once we release the IDR lock in tipc_topsrv_stop(), there is no
guarantee that the tipc_conn is alive.
Let's hold the ref before releasing the lock and put the ref after
tipc_conn_close() in tipc_topsrv_stop().
[0]:
BUG: KASAN: use-after-free in tipc_conn_close+0x122/0x140 net/tipc/topsrv.c:165
Read of size 8 at addr ffff888099305a08 by task kworker/u4:3/435
CPU: 0 PID: 435 Comm: kworker/u4:3 Not tainted 4.19.204-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Workqueue: netns cleanup_net
Call Trace:
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0x1fc/0x2ef lib/dump_stack.c:118
print_address_description.cold+0x54/0x219 mm/kasan/report.c:256
kasan_report_error.cold+0x8a/0x1b9 mm/kasan/report.c:354
kasan_report mm/kasan/report.c:412 [inline]
__asan_report_load8_noabort+0x88/0x90 mm/kasan/report.c:433
tipc_conn_close+0x122/0x140 net/tipc/topsrv.c:165
tipc_topsrv_stop net/tipc/topsrv.c:701 [inline]
tipc_topsrv_exit_net+0x27b/0x5c0 net/tipc/topsrv.c:722
ops_exit_list+0xa5/0x150 net/core/net_namespace.c:153
cleanup_net+0x3b4/0x8b0 net/core/net_namespace.c:553
process_one_work+0x864/0x1570 kernel/workqueue.c:2153
worker_thread+0x64c/0x1130 kernel/workqueue.c:2296
kthread+0x33f/0x460 kernel/kthread.c:259
ret_from_fork+0x24/0x30 arch/x86/entry/entry_64.S:415
Allocated by task 23:
kmem_cache_alloc_trace+0x12f/0x380 mm/slab.c:3625
kmalloc include/linux/slab.h:515 [inline]
kzalloc include/linux/slab.h:709 [inline]
tipc_conn_alloc+0x43/0x4f0 net/tipc/topsrv.c:192
tipc_topsrv_accept+0x1b5/0x280 net/tipc/topsrv.c:470
process_one_work+0x864/0x1570 kernel/workqueue.c:2153
worker_thread+0x64c/0x1130 kernel/workqueue.c:2296
kthread+0x33f/0x460 kernel/kthread.c:259
ret_from_fork+0x24/0x30 arch/x86/entry/entry_64.S:415
Freed by task 23:
__cache_free mm/slab.c:3503 [inline]
kfree+0xcc/0x210 mm/slab.c:3822
tipc_conn_kref_release net/tipc/topsrv.c:150 [inline]
kref_put include/linux/kref.h:70 [inline]
conn_put+0x2cd/0x3a0 net/tipc/topsrv.c:155
process_one_work+0x864/0x1570 kernel/workqueue.c:2153
worker_thread+0x64c/0x1130 kernel/workqueue.c:2296
kthread+0x33f/0x460 kernel/kthread.c:259
ret_from_fork+0x24/0x30 arch/x86/entry/entry_64.S:415
The buggy address belongs to the object at ffff888099305a00
which belongs to the cache kmalloc-512 of size 512
The buggy address is located 8 bytes inside of
512-byte region [ffff888099305a00, ffff888099305c00)
The buggy address belongs to the page:
page:ffffea000264c140 count:1 mapcount:0 mapping:ffff88813bff0940 index:0x0
flags: 0xfff00000000100(slab)
raw: 00fff00000000100 ffffea00028b6b88 ffffea0002cd2b08 ffff88813bff0940
raw: 0000000000000000 ffff888099305000 0000000100000006 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff888099305900: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff888099305980: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
>ffff888099305a00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
ffff888099305a80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff888099305b00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_conntrack: fix crash due to removal of uninitialised entry
A crash in conntrack was reported while trying to unlink the conntrack
entry from the hash bucket list:
[exception RIP: __nf_ct_delete_from_lists+172]
[..]
#7 [ff539b5a2b043aa0] nf_ct_delete at ffffffffc124d421 [nf_conntrack]
#8 [ff539b5a2b043ad0] nf_ct_gc_expired at ffffffffc124d999 [nf_conntrack]
#9 [ff539b5a2b043ae0] __nf_conntrack_find_get at ffffffffc124efbc [nf_conntrack]
[..]
The nf_conn struct is marked as allocated from slab but appears to be in
a partially initialised state:
ct hlist pointer is garbage; looks like the ct hash value
(hence crash).
ct->status is equal to IPS_CONFIRMED|IPS_DYING, which is expected
ct->timeout is 30000 (=30s), which is unexpected.
Everything else looks like normal udp conntrack entry. If we ignore
ct->status and pretend its 0, the entry matches those that are newly
allocated but not yet inserted into the hash:
- ct hlist pointers are overloaded and store/cache the raw tuple hash
- ct->timeout matches the relative time expected for a new udp flow
rather than the absolute 'jiffies' value.
If it were not for the presence of IPS_CONFIRMED,
__nf_conntrack_find_get() would have skipped the entry.
Theory is that we did hit following race:
cpu x cpu y cpu z
found entry E found entry E
E is expired <preemption>
nf_ct_delete()
return E to rcu slab
init_conntrack
E is re-inited,
ct->status set to 0
reply tuplehash hnnode.pprev
stores hash value.
cpu y found E right before it was deleted on cpu x.
E is now re-inited on cpu z. cpu y was preempted before
checking for expiry and/or confirm bit.
->refcnt set to 1
E now owned by skb
->timeout set to 30000
If cpu y were to resume now, it would observe E as
expired but would skip E due to missing CONFIRMED bit.
nf_conntrack_confirm gets called
sets: ct->status |= CONFIRMED
This is wrong: E is not yet added
to hashtable.
cpu y resumes, it observes E as expired but CONFIRMED:
<resumes>
nf_ct_expired()
-> yes (ct->timeout is 30s)
confirmed bit set.
cpu y will try to delete E from the hashtable:
nf_ct_delete() -> set DYING bit
__nf_ct_delete_from_lists
Even this scenario doesn't guarantee a crash:
cpu z still holds the table bucket lock(s) so y blocks:
wait for spinlock held by z
CONFIRMED is set but there is no
guarantee ct will be added to hash:
"chaintoolong" or "clash resolution"
logic both skip the insert step.
reply hnnode.pprev still stores the
hash value.
unlocks spinlock
return NF_DROP
<unblocks, then
crashes on hlist_nulls_del_rcu pprev>
In case CPU z does insert the entry into the hashtable, cpu y will unlink
E again right away but no crash occurs.
Without 'cpu y' race, 'garbage' hlist is of no consequence:
ct refcnt remains at 1, eventually skb will be free'd and E gets
destroyed via: nf_conntrack_put -> nf_conntrack_destroy -> nf_ct_destroy.
To resolve this, move the IPS_CONFIRMED assignment after the table
insertion but before the unlock.
Pablo points out that the confirm-bit-store could be reordered to happen
before hlist add resp. the timeout fixup, so switch to set_bit and
before_atomic memory barrier to prevent this.
It doesn't matter if other CPUs can observe a newly inserted entry right
before the CONFIRMED bit was set:
Such event cannot be distinguished from above "E is the old incarnation"
case: the entry will be skipped.
Also change nf_ct_should_gc() to first check the confirmed bit.
The gc sequence is:
1. Check if entry has expired, if not skip to next entry
2. Obtain a reference to the expired entry.
3. Call nf_ct_should_gc() to double-check step 1.
nf_ct_should_gc() is thus called only for entries that already failed an
expiry check. After this patch, once the confirmed bit check pas
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
tls: always refresh the queue when reading sock
After recent changes in net-next TCP compacts skbs much more
aggressively. This unearthed a bug in TLS where we may try
to operate on an old skb when checking if all skbs in the
queue have matching decrypt state and geometry.
BUG: KASAN: slab-use-after-free in tls_strp_check_rcv+0x898/0x9a0 [tls]
(net/tls/tls_strp.c:436 net/tls/tls_strp.c:530 net/tls/tls_strp.c:544)
Read of size 4 at addr ffff888013085750 by task tls/13529
CPU: 2 UID: 0 PID: 13529 Comm: tls Not tainted 6.16.0-rc5-virtme
Call Trace:
kasan_report+0xca/0x100
tls_strp_check_rcv+0x898/0x9a0 [tls]
tls_rx_rec_wait+0x2c9/0x8d0 [tls]
tls_sw_recvmsg+0x40f/0x1aa0 [tls]
inet_recvmsg+0x1c3/0x1f0
Always reload the queue, fast path is to have the record in the queue
when we wake, anyway (IOW the path going down "if !strp->stm.full_len"). |
| In the Linux kernel, the following vulnerability has been resolved:
net: vlan: fix VLAN 0 refcount imbalance of toggling filtering during runtime
Assuming the "rx-vlan-filter" feature is enabled on a net device, the
8021q module will automatically add or remove VLAN 0 when the net device
is put administratively up or down, respectively. There are a couple of
problems with the above scheme.
The first problem is a memory leak that can happen if the "rx-vlan-filter"
feature is disabled while the device is running:
# ip link add bond1 up type bond mode 0
# ethtool -K bond1 rx-vlan-filter off
# ip link del dev bond1
When the device is put administratively down the "rx-vlan-filter"
feature is disabled, so the 8021q module will not remove VLAN 0 and the
memory will be leaked [1].
Another problem that can happen is that the kernel can automatically
delete VLAN 0 when the device is put administratively down despite not
adding it when the device was put administratively up since during that
time the "rx-vlan-filter" feature was disabled. null-ptr-unref or
bug_on[2] will be triggered by unregister_vlan_dev() for refcount
imbalance if toggling filtering during runtime:
$ ip link add bond0 type bond mode 0
$ ip link add link bond0 name vlan0 type vlan id 0 protocol 802.1q
$ ethtool -K bond0 rx-vlan-filter off
$ ifconfig bond0 up
$ ethtool -K bond0 rx-vlan-filter on
$ ifconfig bond0 down
$ ip link del vlan0
Root cause is as below:
step1: add vlan0 for real_dev, such as bond, team.
register_vlan_dev
vlan_vid_add(real_dev,htons(ETH_P_8021Q),0) //refcnt=1
step2: disable vlan filter feature and enable real_dev
step3: change filter from 0 to 1
vlan_device_event
vlan_filter_push_vids
ndo_vlan_rx_add_vid //No refcnt added to real_dev vlan0
step4: real_dev down
vlan_device_event
vlan_vid_del(dev, htons(ETH_P_8021Q), 0); //refcnt=0
vlan_info_rcu_free //free vlan0
step5: delete vlan0
unregister_vlan_dev
BUG_ON(!vlan_info); //vlan_info is null
Fix both problems by noting in the VLAN info whether VLAN 0 was
automatically added upon NETDEV_UP and based on that decide whether it
should be deleted upon NETDEV_DOWN, regardless of the state of the
"rx-vlan-filter" feature.
[1]
unreferenced object 0xffff8880068e3100 (size 256):
comm "ip", pid 384, jiffies 4296130254
hex dump (first 32 bytes):
00 20 30 0d 80 88 ff ff 00 00 00 00 00 00 00 00 . 0.............
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace (crc 81ce31fa):
__kmalloc_cache_noprof+0x2b5/0x340
vlan_vid_add+0x434/0x940
vlan_device_event.cold+0x75/0xa8
notifier_call_chain+0xca/0x150
__dev_notify_flags+0xe3/0x250
rtnl_configure_link+0x193/0x260
rtnl_newlink_create+0x383/0x8e0
__rtnl_newlink+0x22c/0xa40
rtnl_newlink+0x627/0xb00
rtnetlink_rcv_msg+0x6fb/0xb70
netlink_rcv_skb+0x11f/0x350
netlink_unicast+0x426/0x710
netlink_sendmsg+0x75a/0xc20
__sock_sendmsg+0xc1/0x150
____sys_sendmsg+0x5aa/0x7b0
___sys_sendmsg+0xfc/0x180
[2]
kernel BUG at net/8021q/vlan.c:99!
Oops: invalid opcode: 0000 [#1] SMP KASAN PTI
CPU: 0 UID: 0 PID: 382 Comm: ip Not tainted 6.16.0-rc3 #61 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996),
BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
RIP: 0010:unregister_vlan_dev (net/8021q/vlan.c:99 (discriminator 1))
RSP: 0018:ffff88810badf310 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff88810da84000 RCX: ffffffffb47ceb9a
RDX: dffffc0000000000 RSI: 0000000000000008 RDI: ffff88810e8b43c8
RBP: 0000000000000000 R08: 0000000000000000 R09: fffffbfff6cefe80
R10: ffffffffb677f407 R11: ffff88810badf3c0 R12: ffff88810e8b4000
R13: 0000000000000000 R14: ffff88810642a5c0 R15: 000000000000017e
FS: 00007f1ff68c20c0(0000) GS:ffff888163a24000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f1ff5dad240 CR3: 0000000107e56000 CR4: 00000000000006f0
Call Trace:
<TASK
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Fix null-ptr-deref in l2cap_sock_resume_cb()
syzbot reported null-ptr-deref in l2cap_sock_resume_cb(). [0]
l2cap_sock_resume_cb() has a similar problem that was fixed by commit
1bff51ea59a9 ("Bluetooth: fix use-after-free error in lock_sock_nested()").
Since both l2cap_sock_kill() and l2cap_sock_resume_cb() are executed
under l2cap_sock_resume_cb(), we can avoid the issue simply by checking
if chan->data is NULL.
Let's not access to the killed socket in l2cap_sock_resume_cb().
[0]:
BUG: KASAN: null-ptr-deref in instrument_atomic_write include/linux/instrumented.h:82 [inline]
BUG: KASAN: null-ptr-deref in clear_bit include/asm-generic/bitops/instrumented-atomic.h:41 [inline]
BUG: KASAN: null-ptr-deref in l2cap_sock_resume_cb+0xb4/0x17c net/bluetooth/l2cap_sock.c:1711
Write of size 8 at addr 0000000000000570 by task kworker/u9:0/52
CPU: 1 UID: 0 PID: 52 Comm: kworker/u9:0 Not tainted 6.16.0-rc4-syzkaller-g7482bb149b9f #0 PREEMPT
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/07/2025
Workqueue: hci0 hci_rx_work
Call trace:
show_stack+0x2c/0x3c arch/arm64/kernel/stacktrace.c:501 (C)
__dump_stack+0x30/0x40 lib/dump_stack.c:94
dump_stack_lvl+0xd8/0x12c lib/dump_stack.c:120
print_report+0x58/0x84 mm/kasan/report.c:524
kasan_report+0xb0/0x110 mm/kasan/report.c:634
check_region_inline mm/kasan/generic.c:-1 [inline]
kasan_check_range+0x264/0x2a4 mm/kasan/generic.c:189
__kasan_check_write+0x20/0x30 mm/kasan/shadow.c:37
instrument_atomic_write include/linux/instrumented.h:82 [inline]
clear_bit include/asm-generic/bitops/instrumented-atomic.h:41 [inline]
l2cap_sock_resume_cb+0xb4/0x17c net/bluetooth/l2cap_sock.c:1711
l2cap_security_cfm+0x524/0xea0 net/bluetooth/l2cap_core.c:7357
hci_auth_cfm include/net/bluetooth/hci_core.h:2092 [inline]
hci_auth_complete_evt+0x2e8/0xa4c net/bluetooth/hci_event.c:3514
hci_event_func net/bluetooth/hci_event.c:7511 [inline]
hci_event_packet+0x650/0xe9c net/bluetooth/hci_event.c:7565
hci_rx_work+0x320/0xb18 net/bluetooth/hci_core.c:4070
process_one_work+0x7e8/0x155c kernel/workqueue.c:3238
process_scheduled_works kernel/workqueue.c:3321 [inline]
worker_thread+0x958/0xed8 kernel/workqueue.c:3402
kthread+0x5fc/0x75c kernel/kthread.c:464
ret_from_fork+0x10/0x20 arch/arm64/kernel/entry.S:847 |
| In the Linux kernel, the following vulnerability has been resolved:
usb: net: sierra: check for no status endpoint
The driver checks for having three endpoints and
having bulk in and out endpoints, but not that
the third endpoint is interrupt input.
Rectify the omission. |
| In the Linux kernel, the following vulnerability has been resolved:
rpl: Fix use-after-free in rpl_do_srh_inline().
Running lwt_dst_cache_ref_loop.sh in selftest with KASAN triggers
the splat below [0].
rpl_do_srh_inline() fetches ipv6_hdr(skb) and accesses it after
skb_cow_head(), which is illegal as the header could be freed then.
Let's fix it by making oldhdr to a local struct instead of a pointer.
[0]:
[root@fedora net]# ./lwt_dst_cache_ref_loop.sh
...
TEST: rpl (input)
[ 57.631529] ==================================================================
BUG: KASAN: slab-use-after-free in rpl_do_srh_inline.isra.0 (net/ipv6/rpl_iptunnel.c:174)
Read of size 40 at addr ffff888122bf96d8 by task ping6/1543
CPU: 50 UID: 0 PID: 1543 Comm: ping6 Not tainted 6.16.0-rc5-01302-gfadd1e6231b1 #23 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
Call Trace:
<IRQ>
dump_stack_lvl (lib/dump_stack.c:122)
print_report (mm/kasan/report.c:409 mm/kasan/report.c:521)
kasan_report (mm/kasan/report.c:221 mm/kasan/report.c:636)
kasan_check_range (mm/kasan/generic.c:175 (discriminator 1) mm/kasan/generic.c:189 (discriminator 1))
__asan_memmove (mm/kasan/shadow.c:94 (discriminator 2))
rpl_do_srh_inline.isra.0 (net/ipv6/rpl_iptunnel.c:174)
rpl_input (net/ipv6/rpl_iptunnel.c:201 net/ipv6/rpl_iptunnel.c:282)
lwtunnel_input (net/core/lwtunnel.c:459)
ipv6_rcv (./include/net/dst.h:471 (discriminator 1) ./include/net/dst.h:469 (discriminator 1) net/ipv6/ip6_input.c:79 (discriminator 1) ./include/linux/netfilter.h:317 (discriminator 1) ./include/linux/netfilter.h:311 (discriminator 1) net/ipv6/ip6_input.c:311 (discriminator 1))
__netif_receive_skb_one_core (net/core/dev.c:5967)
process_backlog (./include/linux/rcupdate.h:869 net/core/dev.c:6440)
__napi_poll.constprop.0 (net/core/dev.c:7452)
net_rx_action (net/core/dev.c:7518 net/core/dev.c:7643)
handle_softirqs (kernel/softirq.c:579)
do_softirq (kernel/softirq.c:480 (discriminator 20))
</IRQ>
<TASK>
__local_bh_enable_ip (kernel/softirq.c:407)
__dev_queue_xmit (net/core/dev.c:4740)
ip6_finish_output2 (./include/linux/netdevice.h:3358 ./include/net/neighbour.h:526 ./include/net/neighbour.h:540 net/ipv6/ip6_output.c:141)
ip6_finish_output (net/ipv6/ip6_output.c:215 net/ipv6/ip6_output.c:226)
ip6_output (./include/linux/netfilter.h:306 net/ipv6/ip6_output.c:248)
ip6_send_skb (net/ipv6/ip6_output.c:1983)
rawv6_sendmsg (net/ipv6/raw.c:588 net/ipv6/raw.c:918)
__sys_sendto (net/socket.c:714 (discriminator 1) net/socket.c:729 (discriminator 1) net/socket.c:2228 (discriminator 1))
__x64_sys_sendto (net/socket.c:2231)
do_syscall_64 (arch/x86/entry/syscall_64.c:63 (discriminator 1) arch/x86/entry/syscall_64.c:94 (discriminator 1))
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130)
RIP: 0033:0x7f68cffb2a06
Code: 5d e8 41 8b 93 08 03 00 00 59 5e 48 83 f8 fc 75 19 83 e2 39 83 fa 08 75 11 e8 26 ff ff ff 66 0f 1f 44 00 00 48 8b 45 10 0f 05 <48> 8b 5d f8 c9 c3 0f 1f 40 00 f3 0f 1e fa 55 48 89 e5 48 83 ec 08
RSP: 002b:00007ffefb7c53d0 EFLAGS: 00000202 ORIG_RAX: 000000000000002c
RAX: ffffffffffffffda RBX: 0000564cd69f10a0 RCX: 00007f68cffb2a06
RDX: 0000000000000040 RSI: 0000564cd69f10a4 RDI: 0000000000000003
RBP: 00007ffefb7c53f0 R08: 0000564cd6a032ac R09: 000000000000001c
R10: 0000000000000000 R11: 0000000000000202 R12: 0000564cd69f10a4
R13: 0000000000000040 R14: 00007ffefb7c66e0 R15: 0000564cd69f10a0
</TASK>
Allocated by task 1543:
kasan_save_stack (mm/kasan/common.c:48)
kasan_save_track (mm/kasan/common.c:60 (discriminator 1) mm/kasan/common.c:69 (discriminator 1))
__kasan_slab_alloc (mm/kasan/common.c:319 mm/kasan/common.c:345)
kmem_cache_alloc_node_noprof (./include/linux/kasan.h:250 mm/slub.c:4148 mm/slub.c:4197 mm/slub.c:4249)
kmalloc_reserve (net/core/skbuff.c:581 (discriminator 88))
__alloc_skb (net/core/skbuff.c:669)
__ip6_append_data (net/ipv6/ip6_output.c:1672 (discriminator 1))
ip6_
---truncated--- |
| Improper Neutralization of Input During Web Page Generation (XSS or 'Cross-site Scripting') vulnerability in markdown-it allows Cross-Site Scripting (XSS). This vulnerability is associated with program files lib/renderer.mjs.
This issue affects markdown-it: 14.1.0. NOTE: the Supplier does not consider this issue to be a vulnerability. |
| SQL injection vulnerability based on the melis-cms module of the Melis platform from Melis Technology. This vulnerability allows an attacker to retrieve, create, update, and delete databases through the 'idPage' parameter in the '/melis/MelisCms/PageEdition/getTinyTemplates' endpoint. |
| A vulnerability, which was classified as critical, has been found in itsourcecode Vehicle Management System 1.0. Affected by this issue is some unknown functionality of the file busprofile.php. The manipulation of the argument busid leads to sql injection. The attack may be launched remotely. The exploit has been disclosed to the public and may be used. VDB-269282 is the identifier assigned to this vulnerability. |
| A vulnerability was found in itsourcecode Vehicle Management System 1.0. It has been classified as critical. Affected is an unknown function of the file editbill.php. The manipulation of the argument id leads to sql injection. It is possible to launch the attack remotely. The exploit has been disclosed to the public and may be used. |
| A vulnerability, which was classified as critical, has been found in itsourcecode Gym Management System 1.0. Affected by this issue is some unknown functionality of the file /view_pdetails.php. The manipulation of the argument ID leads to sql injection. The attack may be launched remotely. The exploit has been disclosed to the public and may be used. |
| A vulnerability, which was classified as critical, was found in itsourcecode Gym Management System 1.0. This affects an unknown part of the file /ajax.php?action=delete_user. The manipulation of the argument ID leads to sql injection. It is possible to initiate the attack remotely. The exploit has been disclosed to the public and may be used. |
| A vulnerability has been found in itsourcecode Gym Management System 1.0 and classified as critical. This vulnerability affects unknown code of the file /ajax.php?action=delete_trainer. The manipulation of the argument ID leads to sql injection. The attack can be initiated remotely. The exploit has been disclosed to the public and may be used. |
| A vulnerability was found in itsourcecode Gym Management System 1.0 and classified as critical. This issue affects some unknown processing of the file /ajax.php?action=delete_plan. The manipulation of the argument ID leads to sql injection. The attack may be initiated remotely. The exploit has been disclosed to the public and may be used. |
| A vulnerability was found in itsourcecode Gym Management System 1.0. It has been classified as critical. Affected is an unknown function of the file /ajax.php?action=delete_member. The manipulation of the argument ID leads to sql injection. It is possible to launch the attack remotely. The exploit has been disclosed to the public and may be used. |
| A vulnerability was found in itsourcecode Gym Management System 1.0. It has been declared as critical. Affected by this vulnerability is an unknown functionality of the file /ajax.php?action=delete_package. The manipulation of the argument ID leads to sql injection. The attack can be launched remotely. The exploit has been disclosed to the public and may be used. |
| A vulnerability classified as critical was found in itsourcecode Gym Management System 1.0. Affected by this vulnerability is an unknown functionality of the file /ajax.php?action=delete_member. The manipulation of the argument ID leads to sql injection. The attack can be launched remotely. The exploit has been disclosed to the public and may be used. |