| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A use of externally-controlled format string vulnerability in Fortinet FortiOS 7.6.0 through 7.6.4, FortiOS 7.4.0 through 7.4.9, FortiOS 7.2.0 through 7.2.11, FortiOS 7.0 all versions allows an authenticated admin to execute unauthorized code or commands via specifically crafted configuration. |
| An Improper Link Resolution Before File Access ('Link Following') vulnerability [CWE-59] vulnerability in Fortinet FortiClientWindows 7.4.0 through 7.4.4, FortiClientWindows 7.2.0 through 7.2.12, FortiClientWindows 7.0 all versions may allow a local low-privilege attacker to perform an arbitrary file write with elevated permissions via crafted named pipe messages. |
| Insufficient parameter sanitization in AMD Secure Processor (ASP) Boot Loader could allow an attacker with access to SPIROM upgrade to overwrite the memory, potentially resulting in arbitrary code execution. |
| Insufficient Granularity of Access Control in SEV firmware can allow a privileged attacker to create a SEV-ES Guest to attack SNP guest, potentially resulting in a loss of confidentiality. |
| Incorrect default permissions for some Intel(R) Chipset Software before version 10.1.20266.8668 or later. within Ring 3: User Applications may allow an escalation of privilege. System software adversary with an authenticated user combined with a high complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires active user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Incorrect default permissions for some Intel(R) Memory and Storage Tool before version 2.5.2 within Ring 3: User Applications may allow an escalation of privilege. System software adversary with an authenticated user combined with a high complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires active user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Incorrect permission assignment for critical resource for some System Firmware Update Utility (SysFwUpdt) for Intel(R) Server Boards and Intel(R) Server Systems Based before version 16.0.12. within Ring 3: User Applications may allow an escalation of privilege. System software adversary with a privileged user combined with a low complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires passive user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Worklenz is a project management tool. Prior to 2.1.7, there are multiple SQL injection vulnerabilities were discovered in backend SQL query construction affecting project and task management controllers, reporting and financial data endpoints, real-time socket.io handlers, and resource allocation and scheduling features. The vulnerability has been patched in version v2.1.7. |
| Improper conditions check in some firmware for some Intel(R) NPU Drivers within Ring 1: Device Drivers may allow a denial of service. Unprivileged software adversary with an authenticated user combined with a high complexity attack may enable denial of service. This result may potentially occur via local access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Improper conditions check in some firmware for some Intel(R) NPU Drivers within Ring 3: User Applications may allow an escalation of privilege. Unprivileged software adversary with an authenticated user combined with a low complexity attack may enable data corruption. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (low) and availability (none) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| After Effects versions 25.6 and earlier are affected by a Use After Free vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
| After Effects versions 25.6 and earlier are affected by an out-of-bounds write vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
| Improper conditions check in some firmware for some Intel(R) Graphics Drivers and Intel LTS kernels within Ring 1: Device Drivers may allow a denial of service. Unprivileged software adversary with an authenticated user combined with a high complexity attack may enable denial of service. This result may potentially occur via local access when attack requirements are present with special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (low) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Improper conditions check in some firmware for some Intel(R) NPU Drivers within Ring 1: Device Drivers may allow a denial of service. Unprivileged software adversary with an authenticated user combined with a low complexity attack may enable denial of service. This result may potentially occur via local access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Audition versions 25.3 and earlier are affected by an out-of-bounds write vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
| An Exposure of Sensitive Information to an Unauthorized Actor vulnerability [CWE-200] vulnerability in Fortinet FortiOS 7.6.0 through 7.6.1, FortiOS 7.4.0 through 7.4.6, FortiOS 7.2 all versions, FortiOS 7.0 all versions, FortiOS 6.4 all versions may allow a remote unauthenticated attacker to bypass the patch developed for the symbolic link persistency mechanism observed in some post-exploit cases, via crafted HTTP requests. An attacker would need first to have compromised the product via another vulnerability, at filesystem level. |
| Use of uninitialized variable for some TDX Module before version tdx1.5 within Ring 0: Hypervisor may allow an information disclosure. Authorized adversary with a privileged user combined with a high complexity attack may enable data exposure. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (high), integrity (none) and availability (none) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Incorrect default permissions for some Intel(R) Graphics Driver software within Ring 2: Privileged Process may allow an escalation of privilege. Unprivileged software adversary with an authenticated user combined with a high complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires active user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Uncontrolled search path for some AI Playground before version 2.6.1 beta within Ring 3: User Applications may allow an escalation of privilege. Unprivileged software adversary with an authenticated user combined with a high complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires active user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Insecure inherited permissions for some Intel(R) Graphics Software before version 25.30.1702.0 within Ring 3: User Applications may allow an escalation of privilege. Unprivileged software adversary with an authenticated user combined with a high complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires active user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |