CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
perf/smmuv3: Fix hotplug callback leak in arm_smmu_pmu_init()
arm_smmu_pmu_init() won't remove the callback added by
cpuhp_setup_state_multi() when platform_driver_register() failed. Remove
the callback by cpuhp_remove_multi_state() in fail path.
Similar to the handling of arm_ccn_init() in commit 26242b330093 ("bus:
arm-ccn: Prevent hotplug callback leak") |
In the Linux kernel, the following vulnerability has been resolved:
media: i2c: hi846: Fix memory leak in hi846_parse_dt()
If any of the checks related to the supported link frequencies fail, then
the V4L2 fwnode resources don't get released before returning, which leads
to a memleak. Fix this by properly freeing the V4L2 fwnode data in a
designated label. |
In the Linux kernel, the following vulnerability has been resolved:
staging: rtl8723bs: fix a potential memory leak in rtw_init_cmd_priv()
In rtw_init_cmd_priv(), if `pcmdpriv->rsp_allocated_buf` is allocated
in failure, then `pcmdpriv->cmd_allocated_buf` will be not properly
released. Besides, considering there are only two error paths and the
first one can directly return, so we do not need implicitly jump to the
`exit` tag to execute the error handler.
So this patch added `kfree(pcmdpriv->cmd_allocated_buf);` on the error
path to release the resource and simplified the return logic of
rtw_init_cmd_priv(). As there is no proper device to test with, no runtime
testing was performed. |
In the Linux kernel, the following vulnerability has been resolved:
rcu: Avoid stack overflow due to __rcu_irq_enter_check_tick() being kprobe-ed
Registering a kprobe on __rcu_irq_enter_check_tick() can cause kernel
stack overflow as shown below. This issue can be reproduced by enabling
CONFIG_NO_HZ_FULL and booting the kernel with argument "nohz_full=",
and then giving the following commands at the shell prompt:
# cd /sys/kernel/tracing/
# echo 'p:mp1 __rcu_irq_enter_check_tick' >> kprobe_events
# echo 1 > events/kprobes/enable
This commit therefore adds __rcu_irq_enter_check_tick() to the kprobes
blacklist using NOKPROBE_SYMBOL().
Insufficient stack space to handle exception!
ESR: 0x00000000f2000004 -- BRK (AArch64)
FAR: 0x0000ffffccf3e510
Task stack: [0xffff80000ad30000..0xffff80000ad38000]
IRQ stack: [0xffff800008050000..0xffff800008058000]
Overflow stack: [0xffff089c36f9f310..0xffff089c36fa0310]
CPU: 5 PID: 190 Comm: bash Not tainted 6.2.0-rc2-00320-g1f5abbd77e2c #19
Hardware name: linux,dummy-virt (DT)
pstate: 400003c5 (nZcv DAIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : __rcu_irq_enter_check_tick+0x0/0x1b8
lr : ct_nmi_enter+0x11c/0x138
sp : ffff80000ad30080
x29: ffff80000ad30080 x28: ffff089c82e20000 x27: 0000000000000000
x26: 0000000000000000 x25: ffff089c02a8d100 x24: 0000000000000000
x23: 00000000400003c5 x22: 0000ffffccf3e510 x21: ffff089c36fae148
x20: ffff80000ad30120 x19: ffffa8da8fcce148 x18: 0000000000000000
x17: 0000000000000000 x16: 0000000000000000 x15: ffffa8da8e44ea6c
x14: ffffa8da8e44e968 x13: ffffa8da8e03136c x12: 1fffe113804d6809
x11: ffff6113804d6809 x10: 0000000000000a60 x9 : dfff800000000000
x8 : ffff089c026b404f x7 : 00009eec7fb297f7 x6 : 0000000000000001
x5 : ffff80000ad30120 x4 : dfff800000000000 x3 : ffffa8da8e3016f4
x2 : 0000000000000003 x1 : 0000000000000000 x0 : 0000000000000000
Kernel panic - not syncing: kernel stack overflow
CPU: 5 PID: 190 Comm: bash Not tainted 6.2.0-rc2-00320-g1f5abbd77e2c #19
Hardware name: linux,dummy-virt (DT)
Call trace:
dump_backtrace+0xf8/0x108
show_stack+0x20/0x30
dump_stack_lvl+0x68/0x84
dump_stack+0x1c/0x38
panic+0x214/0x404
add_taint+0x0/0xf8
panic_bad_stack+0x144/0x160
handle_bad_stack+0x38/0x58
__bad_stack+0x78/0x7c
__rcu_irq_enter_check_tick+0x0/0x1b8
arm64_enter_el1_dbg.isra.0+0x14/0x20
el1_dbg+0x2c/0x90
el1h_64_sync_handler+0xcc/0xe8
el1h_64_sync+0x64/0x68
__rcu_irq_enter_check_tick+0x0/0x1b8
arm64_enter_el1_dbg.isra.0+0x14/0x20
el1_dbg+0x2c/0x90
el1h_64_sync_handler+0xcc/0xe8
el1h_64_sync+0x64/0x68
__rcu_irq_enter_check_tick+0x0/0x1b8
arm64_enter_el1_dbg.isra.0+0x14/0x20
el1_dbg+0x2c/0x90
el1h_64_sync_handler+0xcc/0xe8
el1h_64_sync+0x64/0x68
__rcu_irq_enter_check_tick+0x0/0x1b8
[...]
el1_dbg+0x2c/0x90
el1h_64_sync_handler+0xcc/0xe8
el1h_64_sync+0x64/0x68
__rcu_irq_enter_check_tick+0x0/0x1b8
arm64_enter_el1_dbg.isra.0+0x14/0x20
el1_dbg+0x2c/0x90
el1h_64_sync_handler+0xcc/0xe8
el1h_64_sync+0x64/0x68
__rcu_irq_enter_check_tick+0x0/0x1b8
arm64_enter_el1_dbg.isra.0+0x14/0x20
el1_dbg+0x2c/0x90
el1h_64_sync_handler+0xcc/0xe8
el1h_64_sync+0x64/0x68
__rcu_irq_enter_check_tick+0x0/0x1b8
el1_interrupt+0x28/0x60
el1h_64_irq_handler+0x18/0x28
el1h_64_irq+0x64/0x68
__ftrace_set_clr_event_nolock+0x98/0x198
__ftrace_set_clr_event+0x58/0x80
system_enable_write+0x144/0x178
vfs_write+0x174/0x738
ksys_write+0xd0/0x188
__arm64_sys_write+0x4c/0x60
invoke_syscall+0x64/0x180
el0_svc_common.constprop.0+0x84/0x160
do_el0_svc+0x48/0xe8
el0_svc+0x34/0xd0
el0t_64_sync_handler+0xb8/0xc0
el0t_64_sync+0x190/0x194
SMP: stopping secondary CPUs
Kernel Offset: 0x28da86000000 from 0xffff800008000000
PHYS_OFFSET: 0xfffff76600000000
CPU features: 0x00000,01a00100,0000421b
Memory Limit: none |
In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: mlme: fix null-ptr deref on failed assoc
If association to an AP without a link 0 fails, then we crash in
tracing because it assumes that either ap_mld_addr or link 0 BSS
is valid, since we clear sdata->vif.valid_links and then don't
add the ap_mld_addr to the struct.
Since we clear also sdata->vif.cfg.ap_addr, keep a local copy of
it and assign it earlier, before clearing valid_links, to fix
this. |
In the Linux kernel, the following vulnerability has been resolved:
tipc: fix an information leak in tipc_topsrv_kern_subscr
Use a 8-byte write to initialize sub.usr_handle in
tipc_topsrv_kern_subscr(), otherwise four bytes remain uninitialized
when issuing setsockopt(..., SOL_TIPC, ...).
This resulted in an infoleak reported by KMSAN when the packet was
received:
=====================================================
BUG: KMSAN: kernel-infoleak in copyout+0xbc/0x100 lib/iov_iter.c:169
instrument_copy_to_user ./include/linux/instrumented.h:121
copyout+0xbc/0x100 lib/iov_iter.c:169
_copy_to_iter+0x5c0/0x20a0 lib/iov_iter.c:527
copy_to_iter ./include/linux/uio.h:176
simple_copy_to_iter+0x64/0xa0 net/core/datagram.c:513
__skb_datagram_iter+0x123/0xdc0 net/core/datagram.c:419
skb_copy_datagram_iter+0x58/0x200 net/core/datagram.c:527
skb_copy_datagram_msg ./include/linux/skbuff.h:3903
packet_recvmsg+0x521/0x1e70 net/packet/af_packet.c:3469
____sys_recvmsg+0x2c4/0x810 net/socket.c:?
___sys_recvmsg+0x217/0x840 net/socket.c:2743
__sys_recvmsg net/socket.c:2773
__do_sys_recvmsg net/socket.c:2783
__se_sys_recvmsg net/socket.c:2780
__x64_sys_recvmsg+0x364/0x540 net/socket.c:2780
do_syscall_x64 arch/x86/entry/common.c:50
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd arch/x86/entry/entry_64.S:120
...
Uninit was stored to memory at:
tipc_sub_subscribe+0x42d/0xb50 net/tipc/subscr.c:156
tipc_conn_rcv_sub+0x246/0x620 net/tipc/topsrv.c:375
tipc_topsrv_kern_subscr+0x2e8/0x400 net/tipc/topsrv.c:579
tipc_group_create+0x4e7/0x7d0 net/tipc/group.c:190
tipc_sk_join+0x2a8/0x770 net/tipc/socket.c:3084
tipc_setsockopt+0xae5/0xe40 net/tipc/socket.c:3201
__sys_setsockopt+0x87f/0xdc0 net/socket.c:2252
__do_sys_setsockopt net/socket.c:2263
__se_sys_setsockopt net/socket.c:2260
__x64_sys_setsockopt+0xe0/0x160 net/socket.c:2260
do_syscall_x64 arch/x86/entry/common.c:50
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd arch/x86/entry/entry_64.S:120
Local variable sub created at:
tipc_topsrv_kern_subscr+0x57/0x400 net/tipc/topsrv.c:562
tipc_group_create+0x4e7/0x7d0 net/tipc/group.c:190
Bytes 84-87 of 88 are uninitialized
Memory access of size 88 starts at ffff88801ed57cd0
Data copied to user address 0000000020000400
...
===================================================== |
In the Linux kernel, the following vulnerability has been resolved:
x86: fix clear_user_rep_good() exception handling annotation
This code no longer exists in mainline, because it was removed in
commit d2c95f9d6802 ("x86: don't use REP_GOOD or ERMS for user memory
clearing") upstream.
However, rather than backport the full range of x86 memory clearing and
copying cleanups, fix the exception table annotation placement for the
final 'rep movsb' in clear_user_rep_good(): rather than pointing at the
actual instruction that did the user space access, it pointed to the
register move just before it.
That made sense from a code flow standpoint, but not from an actual
usage standpoint: it means that if user access takes an exception, the
exception handler won't actually find the instruction in the exception
tables.
As a result, rather than fixing it up and returning -EFAULT, it would
then turn it into a kernel oops report instead, something like:
BUG: unable to handle page fault for address: 0000000020081000
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
...
RIP: 0010:clear_user_rep_good+0x1c/0x30 arch/x86/lib/clear_page_64.S:147
...
Call Trace:
__clear_user arch/x86/include/asm/uaccess_64.h:103 [inline]
clear_user arch/x86/include/asm/uaccess_64.h:124 [inline]
iov_iter_zero+0x709/0x1290 lib/iov_iter.c:800
iomap_dio_hole_iter fs/iomap/direct-io.c:389 [inline]
iomap_dio_iter fs/iomap/direct-io.c:440 [inline]
__iomap_dio_rw+0xe3d/0x1cd0 fs/iomap/direct-io.c:601
iomap_dio_rw+0x40/0xa0 fs/iomap/direct-io.c:689
ext4_dio_read_iter fs/ext4/file.c:94 [inline]
ext4_file_read_iter+0x4be/0x690 fs/ext4/file.c:145
call_read_iter include/linux/fs.h:2183 [inline]
do_iter_readv_writev+0x2e0/0x3b0 fs/read_write.c:733
do_iter_read+0x2f2/0x750 fs/read_write.c:796
vfs_readv+0xe5/0x150 fs/read_write.c:916
do_preadv+0x1b6/0x270 fs/read_write.c:1008
__do_sys_preadv2 fs/read_write.c:1070 [inline]
__se_sys_preadv2 fs/read_write.c:1061 [inline]
__x64_sys_preadv2+0xef/0x150 fs/read_write.c:1061
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x39/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
which then looks like a filesystem bug rather than the incorrect
exception annotation that it is.
[ The alternative to this one-liner fix is to take the upstream series
that cleans this all up:
68674f94ffc9 ("x86: don't use REP_GOOD or ERMS for small memory copies")
20f3337d350c ("x86: don't use REP_GOOD or ERMS for small memory clearing")
adfcf4231b8c ("x86: don't use REP_GOOD or ERMS for user memory copies")
* d2c95f9d6802 ("x86: don't use REP_GOOD or ERMS for user memory clearing")
3639a535587d ("x86: move stac/clac from user copy routines into callers")
577e6a7fd50d ("x86: inline the 'rep movs' in user copies for the FSRM case")
8c9b6a88b7e2 ("x86: improve on the non-rep 'clear_user' function")
427fda2c8a49 ("x86: improve on the non-rep 'copy_user' function")
* e046fe5a36a9 ("x86: set FSRS automatically on AMD CPUs that have FSRM")
e1f2750edc4a ("x86: remove 'zerorest' argument from __copy_user_nocache()")
034ff37d3407 ("x86: rewrite '__copy_user_nocache' function")
with either the whole series or at a minimum the two marked commits
being needed to fix this issue ] |
In the Linux kernel, the following vulnerability has been resolved:
blk-iolatency: Fix memory leak on add_disk() failures
When a gendisk is successfully initialized but add_disk() fails such as when
a loop device has invalid number of minor device numbers specified,
blkcg_init_disk() is called during init and then blkcg_exit_disk() during
error handling. Unfortunately, iolatency gets initialized in the former but
doesn't get cleaned up in the latter.
This is because, in non-error cases, the cleanup is performed by
del_gendisk() calling rq_qos_exit(), the assumption being that rq_qos
policies, iolatency being one of them, can only be activated once the disk
is fully registered and visible. That assumption is true for wbt and iocost,
but not so for iolatency as it gets initialized before add_disk() is called.
It is desirable to lazy-init rq_qos policies because they are optional
features and add to hot path overhead once initialized - each IO has to walk
all the registered rq_qos policies. So, we want to switch iolatency to lazy
init too. However, that's a bigger change. As a fix for the immediate
problem, let's just add an extra call to rq_qos_exit() in blkcg_exit_disk().
This is safe because duplicate calls to rq_qos_exit() become noop's. |
In the Linux kernel, the following vulnerability has been resolved:
ext4: fix uninititialized value in 'ext4_evict_inode'
Syzbot found the following issue:
=====================================================
BUG: KMSAN: uninit-value in ext4_evict_inode+0xdd/0x26b0 fs/ext4/inode.c:180
ext4_evict_inode+0xdd/0x26b0 fs/ext4/inode.c:180
evict+0x365/0x9a0 fs/inode.c:664
iput_final fs/inode.c:1747 [inline]
iput+0x985/0xdd0 fs/inode.c:1773
__ext4_new_inode+0xe54/0x7ec0 fs/ext4/ialloc.c:1361
ext4_mknod+0x376/0x840 fs/ext4/namei.c:2844
vfs_mknod+0x79d/0x830 fs/namei.c:3914
do_mknodat+0x47d/0xaa0
__do_sys_mknodat fs/namei.c:3992 [inline]
__se_sys_mknodat fs/namei.c:3989 [inline]
__ia32_sys_mknodat+0xeb/0x150 fs/namei.c:3989
do_syscall_32_irqs_on arch/x86/entry/common.c:112 [inline]
__do_fast_syscall_32+0xa2/0x100 arch/x86/entry/common.c:178
do_fast_syscall_32+0x33/0x70 arch/x86/entry/common.c:203
do_SYSENTER_32+0x1b/0x20 arch/x86/entry/common.c:246
entry_SYSENTER_compat_after_hwframe+0x70/0x82
Uninit was created at:
__alloc_pages+0x9f1/0xe80 mm/page_alloc.c:5578
alloc_pages+0xaae/0xd80 mm/mempolicy.c:2285
alloc_slab_page mm/slub.c:1794 [inline]
allocate_slab+0x1b5/0x1010 mm/slub.c:1939
new_slab mm/slub.c:1992 [inline]
___slab_alloc+0x10c3/0x2d60 mm/slub.c:3180
__slab_alloc mm/slub.c:3279 [inline]
slab_alloc_node mm/slub.c:3364 [inline]
slab_alloc mm/slub.c:3406 [inline]
__kmem_cache_alloc_lru mm/slub.c:3413 [inline]
kmem_cache_alloc_lru+0x6f3/0xb30 mm/slub.c:3429
alloc_inode_sb include/linux/fs.h:3117 [inline]
ext4_alloc_inode+0x5f/0x860 fs/ext4/super.c:1321
alloc_inode+0x83/0x440 fs/inode.c:259
new_inode_pseudo fs/inode.c:1018 [inline]
new_inode+0x3b/0x430 fs/inode.c:1046
__ext4_new_inode+0x2a7/0x7ec0 fs/ext4/ialloc.c:959
ext4_mkdir+0x4d5/0x1560 fs/ext4/namei.c:2992
vfs_mkdir+0x62a/0x870 fs/namei.c:4035
do_mkdirat+0x466/0x7b0 fs/namei.c:4060
__do_sys_mkdirat fs/namei.c:4075 [inline]
__se_sys_mkdirat fs/namei.c:4073 [inline]
__ia32_sys_mkdirat+0xc4/0x120 fs/namei.c:4073
do_syscall_32_irqs_on arch/x86/entry/common.c:112 [inline]
__do_fast_syscall_32+0xa2/0x100 arch/x86/entry/common.c:178
do_fast_syscall_32+0x33/0x70 arch/x86/entry/common.c:203
do_SYSENTER_32+0x1b/0x20 arch/x86/entry/common.c:246
entry_SYSENTER_compat_after_hwframe+0x70/0x82
CPU: 1 PID: 4625 Comm: syz-executor.2 Not tainted 6.1.0-rc4-syzkaller-62821-gcb231e2f67ec #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022
=====================================================
Now, 'ext4_alloc_inode()' didn't init 'ei->i_flags'. If new inode failed
before set 'ei->i_flags' in '__ext4_new_inode()', then do 'iput()'. As after
6bc0d63dad7f commit will access 'ei->i_flags' in 'ext4_evict_inode()' which
will lead to access uninit-value.
To solve above issue just init 'ei->i_flags' in 'ext4_alloc_inode()'. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: Fix potential shift-out-of-bounds in brcmf_fw_alloc_request()
This patch fixes a shift-out-of-bounds in brcmfmac that occurs in
BIT(chiprev) when a 'chiprev' provided by the device is too large.
It should also not be equal to or greater than BITS_PER_TYPE(u32)
as we do bitwise AND with a u32 variable and BIT(chiprev). The patch
adds a check that makes the function return NULL if that is the case.
Note that the NULL case is later handled by the bus-specific caller,
brcmf_usb_probe_cb() or brcmf_usb_reset_resume(), for example.
Found by a modified version of syzkaller.
UBSAN: shift-out-of-bounds in drivers/net/wireless/broadcom/brcm80211/brcmfmac/firmware.c
shift exponent 151055786 is too large for 64-bit type 'long unsigned int'
CPU: 0 PID: 1885 Comm: kworker/0:2 Tainted: G O 5.14.0+ #132
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.org 04/01/2014
Workqueue: usb_hub_wq hub_event
Call Trace:
dump_stack_lvl+0x57/0x7d
ubsan_epilogue+0x5/0x40
__ubsan_handle_shift_out_of_bounds.cold+0x53/0xdb
? lock_chain_count+0x20/0x20
brcmf_fw_alloc_request.cold+0x19/0x3ea
? brcmf_fw_get_firmwares+0x250/0x250
? brcmf_usb_ioctl_resp_wait+0x1a7/0x1f0
brcmf_usb_get_fwname+0x114/0x1a0
? brcmf_usb_reset_resume+0x120/0x120
? number+0x6c4/0x9a0
brcmf_c_process_clm_blob+0x168/0x590
? put_dec+0x90/0x90
? enable_ptr_key_workfn+0x20/0x20
? brcmf_common_pd_remove+0x50/0x50
? rcu_read_lock_sched_held+0xa1/0xd0
brcmf_c_preinit_dcmds+0x673/0xc40
? brcmf_c_set_joinpref_default+0x100/0x100
? rcu_read_lock_sched_held+0xa1/0xd0
? rcu_read_lock_bh_held+0xb0/0xb0
? lock_acquire+0x19d/0x4e0
? find_held_lock+0x2d/0x110
? brcmf_usb_deq+0x1cc/0x260
? mark_held_locks+0x9f/0xe0
? lockdep_hardirqs_on_prepare+0x273/0x3e0
? _raw_spin_unlock_irqrestore+0x47/0x50
? trace_hardirqs_on+0x1c/0x120
? brcmf_usb_deq+0x1a7/0x260
? brcmf_usb_rx_fill_all+0x5a/0xf0
brcmf_attach+0x246/0xd40
? wiphy_new_nm+0x1476/0x1d50
? kmemdup+0x30/0x40
brcmf_usb_probe+0x12de/0x1690
? brcmf_usbdev_qinit.constprop.0+0x470/0x470
usb_probe_interface+0x25f/0x710
really_probe+0x1be/0xa90
__driver_probe_device+0x2ab/0x460
? usb_match_id.part.0+0x88/0xc0
driver_probe_device+0x49/0x120
__device_attach_driver+0x18a/0x250
? driver_allows_async_probing+0x120/0x120
bus_for_each_drv+0x123/0x1a0
? bus_rescan_devices+0x20/0x20
? lockdep_hardirqs_on_prepare+0x273/0x3e0
? trace_hardirqs_on+0x1c/0x120
__device_attach+0x207/0x330
? device_bind_driver+0xb0/0xb0
? kobject_uevent_env+0x230/0x12c0
bus_probe_device+0x1a2/0x260
device_add+0xa61/0x1ce0
? __mutex_unlock_slowpath+0xe7/0x660
? __fw_devlink_link_to_suppliers+0x550/0x550
usb_set_configuration+0x984/0x1770
? kernfs_create_link+0x175/0x230
usb_generic_driver_probe+0x69/0x90
usb_probe_device+0x9c/0x220
really_probe+0x1be/0xa90
__driver_probe_device+0x2ab/0x460
driver_probe_device+0x49/0x120
__device_attach_driver+0x18a/0x250
? driver_allows_async_probing+0x120/0x120
bus_for_each_drv+0x123/0x1a0
? bus_rescan_devices+0x20/0x20
? lockdep_hardirqs_on_prepare+0x273/0x3e0
? trace_hardirqs_on+0x1c/0x120
__device_attach+0x207/0x330
? device_bind_driver+0xb0/0xb0
? kobject_uevent_env+0x230/0x12c0
bus_probe_device+0x1a2/0x260
device_add+0xa61/0x1ce0
? __fw_devlink_link_to_suppliers+0x550/0x550
usb_new_device.cold+0x463/0xf66
? hub_disconnect+0x400/0x400
? _raw_spin_unlock_irq+0x24/0x30
hub_event+0x10d5/0x3330
? hub_port_debounce+0x280/0x280
? __lock_acquire+0x1671/0x5790
? wq_calc_node_cpumask+0x170/0x2a0
? lock_release+0x640/0x640
? rcu_read_lock_sched_held+0xa1/0xd0
? rcu_read_lock_bh_held+0xb0/0xb0
? lockdep_hardirqs_on_prepare+0x273/0x3e0
process_one_work+0x873/0x13e0
? lock_release+0x640/0x640
? pwq_dec_nr_in_flight+0x320/0x320
? rwlock_bug.part.0+0x90/0x90
worker_thread+0x8b/0xd10
? __kthread_parkme+0xd9/0x1d0
? pr
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
bpf: Make bpf_refcount_acquire fallible for non-owning refs
This patch fixes an incorrect assumption made in the original
bpf_refcount series [0], specifically that the BPF program calling
bpf_refcount_acquire on some node can always guarantee that the node is
alive. In that series, the patch adding failure behavior to rbtree_add
and list_push_{front, back} breaks this assumption for non-owning
references.
Consider the following program:
n = bpf_kptr_xchg(&mapval, NULL);
/* skip error checking */
bpf_spin_lock(&l);
if(bpf_rbtree_add(&t, &n->rb, less)) {
bpf_refcount_acquire(n);
/* Failed to add, do something else with the node */
}
bpf_spin_unlock(&l);
It's incorrect to assume that bpf_refcount_acquire will always succeed in this
scenario. bpf_refcount_acquire is being called in a critical section
here, but the lock being held is associated with rbtree t, which isn't
necessarily the lock associated with the tree that the node is already
in. So after bpf_rbtree_add fails to add the node and calls bpf_obj_drop
in it, the program has no ownership of the node's lifetime. Therefore
the node's refcount can be decr'd to 0 at any time after the failing
rbtree_add. If this happens before the refcount_acquire above, the node
might be free'd, and regardless refcount_acquire will be incrementing a
0 refcount.
Later patches in the series exercise this scenario, resulting in the
expected complaint from the kernel (without this patch's changes):
refcount_t: addition on 0; use-after-free.
WARNING: CPU: 1 PID: 207 at lib/refcount.c:25 refcount_warn_saturate+0xbc/0x110
Modules linked in: bpf_testmod(O)
CPU: 1 PID: 207 Comm: test_progs Tainted: G O 6.3.0-rc7-02231-g723de1a718a2-dirty #371
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.15.0-0-g2dd4b9b3f840-prebuilt.qemu.org 04/01/2014
RIP: 0010:refcount_warn_saturate+0xbc/0x110
Code: 6f 64 f6 02 01 e8 84 a3 5c ff 0f 0b eb 9d 80 3d 5e 64 f6 02 00 75 94 48 c7 c7 e0 13 d2 82 c6 05 4e 64 f6 02 01 e8 64 a3 5c ff <0f> 0b e9 7a ff ff ff 80 3d 38 64 f6 02 00 0f 85 6d ff ff ff 48 c7
RSP: 0018:ffff88810b9179b0 EFLAGS: 00010082
RAX: 0000000000000000 RBX: 0000000000000002 RCX: 0000000000000000
RDX: 0000000000000202 RSI: 0000000000000008 RDI: ffffffff857c3680
RBP: ffff88810027d3c0 R08: ffffffff8125f2a4 R09: ffff88810b9176e7
R10: ffffed1021722edc R11: 746e756f63666572 R12: ffff88810027d388
R13: ffff88810027d3c0 R14: ffffc900005fe030 R15: ffffc900005fe048
FS: 00007fee0584a700(0000) GS:ffff88811b280000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005634a96f6c58 CR3: 0000000108ce9002 CR4: 0000000000770ee0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<TASK>
bpf_refcount_acquire_impl+0xb5/0xc0
(rest of output snipped)
The patch addresses this by changing bpf_refcount_acquire_impl to use
refcount_inc_not_zero instead of refcount_inc and marking
bpf_refcount_acquire KF_RET_NULL.
For owning references, though, we know the above scenario is not possible
and thus that bpf_refcount_acquire will always succeed. Some verifier
bookkeeping is added to track "is input owning ref?" for bpf_refcount_acquire
calls and return false from is_kfunc_ret_null for bpf_refcount_acquire on
owning refs despite it being marked KF_RET_NULL.
Existing selftests using bpf_refcount_acquire are modified where
necessary to NULL-check its return value.
[0]: https://lore.kernel.org/bpf/20230415201811.343116-1-davemarchevsky@fb.com/ |
A security flaw has been discovered in SourceCodester Hotel and Lodge Management System 1.0. The affected element is an unknown function of the file /login.php. Performing manipulation of the argument email results in sql injection. The attack may be initiated remotely. The exploit has been released to the public and may be exploited. |
In the Linux kernel, the following vulnerability has been resolved:
mm/huge_memory: do not clobber swp_entry_t during THP split
The following has been observed when running stressng mmap since commit
b653db77350c ("mm: Clear page->private when splitting or migrating a page")
watchdog: BUG: soft lockup - CPU#75 stuck for 26s! [stress-ng:9546]
CPU: 75 PID: 9546 Comm: stress-ng Tainted: G E 6.0.0-revert-b653db77-fix+ #29 0357d79b60fb09775f678e4f3f64ef0579ad1374
Hardware name: SGI.COM C2112-4GP3/X10DRT-P-Series, BIOS 2.0a 05/09/2016
RIP: 0010:xas_descend+0x28/0x80
Code: cc cc 0f b6 0e 48 8b 57 08 48 d3 ea 83 e2 3f 89 d0 48 83 c0 04 48 8b 44 c6 08 48 89 77 18 48 89 c1 83 e1 03 48 83 f9 02 75 08 <48> 3d fd 00 00 00 76 08 88 57 12 c3 cc cc cc cc 48 c1 e8 02 89 c2
RSP: 0018:ffffbbf02a2236a8 EFLAGS: 00000246
RAX: ffff9cab7d6a0002 RBX: ffffe04b0af88040 RCX: 0000000000000002
RDX: 0000000000000030 RSI: ffff9cab60509b60 RDI: ffffbbf02a2236c0
RBP: 0000000000000000 R08: ffff9cab60509b60 R09: ffffbbf02a2236c0
R10: 0000000000000001 R11: ffffbbf02a223698 R12: 0000000000000000
R13: ffff9cab4e28da80 R14: 0000000000039c01 R15: ffff9cab4e28da88
FS: 00007fab89b85e40(0000) GS:ffff9cea3fcc0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fab84e00000 CR3: 00000040b73a4003 CR4: 00000000003706e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
xas_load+0x3a/0x50
__filemap_get_folio+0x80/0x370
? put_swap_page+0x163/0x360
pagecache_get_page+0x13/0x90
__try_to_reclaim_swap+0x50/0x190
scan_swap_map_slots+0x31e/0x670
get_swap_pages+0x226/0x3c0
folio_alloc_swap+0x1cc/0x240
add_to_swap+0x14/0x70
shrink_page_list+0x968/0xbc0
reclaim_page_list+0x70/0xf0
reclaim_pages+0xdd/0x120
madvise_cold_or_pageout_pte_range+0x814/0xf30
walk_pgd_range+0x637/0xa30
__walk_page_range+0x142/0x170
walk_page_range+0x146/0x170
madvise_pageout+0xb7/0x280
? asm_common_interrupt+0x22/0x40
madvise_vma_behavior+0x3b7/0xac0
? find_vma+0x4a/0x70
? find_vma+0x64/0x70
? madvise_vma_anon_name+0x40/0x40
madvise_walk_vmas+0xa6/0x130
do_madvise+0x2f4/0x360
__x64_sys_madvise+0x26/0x30
do_syscall_64+0x5b/0x80
? do_syscall_64+0x67/0x80
? syscall_exit_to_user_mode+0x17/0x40
? do_syscall_64+0x67/0x80
? syscall_exit_to_user_mode+0x17/0x40
? do_syscall_64+0x67/0x80
? do_syscall_64+0x67/0x80
? common_interrupt+0x8b/0xa0
entry_SYSCALL_64_after_hwframe+0x63/0xcd
The problem can be reproduced with the mmtests config
config-workload-stressng-mmap. It does not always happen and when it
triggers is variable but it has happened on multiple machines.
The intent of commit b653db77350c patch was to avoid the case where
PG_private is clear but folio->private is not-NULL. However, THP tail
pages uses page->private for "swp_entry_t if folio_test_swapcache()" as
stated in the documentation for struct folio. This patch only clobbers
page->private for tail pages if the head page was not in swapcache and
warns once if page->private had an unexpected value. |
In the Linux kernel, the following vulnerability has been resolved:
blk-mq: fix null pointer dereference in blk_mq_clear_rq_mapping()
Our syzkaller report a null pointer dereference, root cause is
following:
__blk_mq_alloc_map_and_rqs
set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs
blk_mq_alloc_map_and_rqs
blk_mq_alloc_rqs
// failed due to oom
alloc_pages_node
// set->tags[hctx_idx] is still NULL
blk_mq_free_rqs
drv_tags = set->tags[hctx_idx];
// null pointer dereference is triggered
blk_mq_clear_rq_mapping(drv_tags, ...)
This is because commit 63064be150e4 ("blk-mq:
Add blk_mq_alloc_map_and_rqs()") merged the two steps:
1) set->tags[hctx_idx] = blk_mq_alloc_rq_map()
2) blk_mq_alloc_rqs(..., set->tags[hctx_idx])
into one step:
set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs()
Since tags is not initialized yet in this case, fix the problem by
checking if tags is NULL pointer in blk_mq_clear_rq_mapping(). |
Rack is a modular Ruby web server interface. In versions prior to 2.2.19, 3.1.17, and 3.2.2, ``Rack::Multipart::Parser` stores non-file form fields (parts without a `filename`) entirely in memory as Ruby `String` objects. A single large text field in a multipart/form-data request (hundreds of megabytes or more) can consume equivalent process memory, potentially leading to out-of-memory (OOM) conditions and denial of service (DoS). Attackers can send large non-file fields to trigger excessive memory usage. Impact scales with request size and concurrency, potentially leading to worker crashes or severe garbage-collection overhead. All Rack applications processing multipart form submissions are affected. Versions 2.2.19, 3.1.17, and 3.2.2 enforce a reasonable size cap for non-file fields (e.g., 2 MiB). Workarounds include restricting maximum request body size at the web-server or proxy layer (e.g., Nginx `client_max_body_size`) and validating and rejecting unusually large form fields at the application level. |
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: replace WARN_ONs by nilfs_error for checkpoint acquisition failure
If creation or finalization of a checkpoint fails due to anomalies in the
checkpoint metadata on disk, a kernel warning is generated.
This patch replaces the WARN_ONs by nilfs_error, so that a kernel, booted
with panic_on_warn, does not panic. A nilfs_error is appropriate here to
handle the abnormal filesystem condition.
This also replaces the detected error codes with an I/O error so that
neither of the internal error codes is returned to callers. |
In the Linux kernel, the following vulnerability has been resolved:
fs: dlm: fix use after free in midcomms commit
While working on processing dlm message in softirq context I experienced
the following KASAN use-after-free warning:
[ 151.760477] ==================================================================
[ 151.761803] BUG: KASAN: use-after-free in dlm_midcomms_commit_mhandle+0x19d/0x4b0
[ 151.763414] Read of size 4 at addr ffff88811a980c60 by task lock_torture/1347
[ 151.765284] CPU: 7 PID: 1347 Comm: lock_torture Not tainted 6.1.0-rc4+ #2828
[ 151.766778] Hardware name: Red Hat KVM/RHEL-AV, BIOS 1.16.0-3.module+el8.7.0+16134+e5908aa2 04/01/2014
[ 151.768726] Call Trace:
[ 151.769277] <TASK>
[ 151.769748] dump_stack_lvl+0x5b/0x86
[ 151.770556] print_report+0x180/0x4c8
[ 151.771378] ? kasan_complete_mode_report_info+0x7c/0x1e0
[ 151.772241] ? dlm_midcomms_commit_mhandle+0x19d/0x4b0
[ 151.773069] kasan_report+0x93/0x1a0
[ 151.773668] ? dlm_midcomms_commit_mhandle+0x19d/0x4b0
[ 151.774514] __asan_load4+0x7e/0xa0
[ 151.775089] dlm_midcomms_commit_mhandle+0x19d/0x4b0
[ 151.775890] ? create_message.isra.29.constprop.64+0x57/0xc0
[ 151.776770] send_common+0x19f/0x1b0
[ 151.777342] ? remove_from_waiters+0x60/0x60
[ 151.778017] ? lock_downgrade+0x410/0x410
[ 151.778648] ? __this_cpu_preempt_check+0x13/0x20
[ 151.779421] ? rcu_lockdep_current_cpu_online+0x88/0xc0
[ 151.780292] _convert_lock+0x46/0x150
[ 151.780893] convert_lock+0x7b/0xc0
[ 151.781459] dlm_lock+0x3ac/0x580
[ 151.781993] ? 0xffffffffc0540000
[ 151.782522] ? torture_stop+0x120/0x120 [dlm_locktorture]
[ 151.783379] ? dlm_scan_rsbs+0xa70/0xa70
[ 151.784003] ? preempt_count_sub+0xd6/0x130
[ 151.784661] ? is_module_address+0x47/0x70
[ 151.785309] ? torture_stop+0x120/0x120 [dlm_locktorture]
[ 151.786166] ? 0xffffffffc0540000
[ 151.786693] ? lockdep_init_map_type+0xc3/0x360
[ 151.787414] ? 0xffffffffc0540000
[ 151.787947] torture_dlm_lock_sync.isra.3+0xe9/0x150 [dlm_locktorture]
[ 151.789004] ? torture_stop+0x120/0x120 [dlm_locktorture]
[ 151.789858] ? 0xffffffffc0540000
[ 151.790392] ? lock_torture_cleanup+0x20/0x20 [dlm_locktorture]
[ 151.791347] ? delay_tsc+0x94/0xc0
[ 151.791898] torture_ex_iter+0xc3/0xea [dlm_locktorture]
[ 151.792735] ? torture_start+0x30/0x30 [dlm_locktorture]
[ 151.793606] lock_torture+0x177/0x270 [dlm_locktorture]
[ 151.794448] ? torture_dlm_lock_sync.isra.3+0x150/0x150 [dlm_locktorture]
[ 151.795539] ? lock_torture_stats+0x80/0x80 [dlm_locktorture]
[ 151.796476] ? do_raw_spin_lock+0x11e/0x1e0
[ 151.797152] ? mark_held_locks+0x34/0xb0
[ 151.797784] ? _raw_spin_unlock_irqrestore+0x30/0x70
[ 151.798581] ? __kthread_parkme+0x79/0x110
[ 151.799246] ? trace_preempt_on+0x2a/0xf0
[ 151.799902] ? __kthread_parkme+0x79/0x110
[ 151.800579] ? preempt_count_sub+0xd6/0x130
[ 151.801271] ? __kasan_check_read+0x11/0x20
[ 151.801963] ? __kthread_parkme+0xec/0x110
[ 151.802630] ? lock_torture_stats+0x80/0x80 [dlm_locktorture]
[ 151.803569] kthread+0x192/0x1d0
[ 151.804104] ? kthread_complete_and_exit+0x30/0x30
[ 151.804881] ret_from_fork+0x1f/0x30
[ 151.805480] </TASK>
[ 151.806111] Allocated by task 1347:
[ 151.806681] kasan_save_stack+0x26/0x50
[ 151.807308] kasan_set_track+0x25/0x30
[ 151.807920] kasan_save_alloc_info+0x1e/0x30
[ 151.808609] __kasan_slab_alloc+0x63/0x80
[ 151.809263] kmem_cache_alloc+0x1ad/0x830
[ 151.809916] dlm_allocate_mhandle+0x17/0x20
[ 151.810590] dlm_midcomms_get_mhandle+0x96/0x260
[ 151.811344] _create_message+0x95/0x180
[ 151.811994] create_message.isra.29.constprop.64+0x57/0xc0
[ 151.812880] send_common+0x129/0x1b0
[ 151.813467] _convert_lock+0x46/0x150
[ 151.814074] convert_lock+0x7b/0xc0
[ 151.814648] dlm_lock+0x3ac/0x580
[ 151.815199] torture_dlm_lock_sync.isra.3+0xe9/0x150 [dlm_locktorture]
[ 151.816258] torture_ex_iter+0xc3/0xea [dlm_locktorture]
[ 151.817129] lock_t
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
platform/x86: dell-sysman: Fix reference leak
If a duplicate attribute is found using kset_find_obj(),
a reference to that attribute is returned. This means
that we need to dispose it accordingly. Use kobject_put()
to dispose the duplicate attribute in such a case.
Compile-tested only. |
In the Linux kernel, the following vulnerability has been resolved:
media: i2c: ov772x: Fix memleak in ov772x_probe()
A memory leak was reported when testing ov772x with bpf mock device:
AssertionError: unreferenced object 0xffff888109afa7a8 (size 8):
comm "python3", pid 279, jiffies 4294805921 (age 20.681s)
hex dump (first 8 bytes):
80 22 88 15 81 88 ff ff ."......
backtrace:
[<000000009990b438>] __kmalloc_node+0x44/0x1b0
[<000000009e32f7d7>] kvmalloc_node+0x34/0x180
[<00000000faf48134>] v4l2_ctrl_handler_init_class+0x11d/0x180 [videodev]
[<00000000da376937>] ov772x_probe+0x1c3/0x68c [ov772x]
[<000000003f0d225e>] i2c_device_probe+0x28d/0x680
[<00000000e0b6db89>] really_probe+0x17c/0x3f0
[<000000001b19fcee>] __driver_probe_device+0xe3/0x170
[<0000000048370519>] driver_probe_device+0x49/0x120
[<000000005ead07a0>] __device_attach_driver+0xf7/0x150
[<0000000043f452b8>] bus_for_each_drv+0x114/0x180
[<00000000358e5596>] __device_attach+0x1e5/0x2d0
[<0000000043f83c5d>] bus_probe_device+0x126/0x140
[<00000000ee0f3046>] device_add+0x810/0x1130
[<00000000e0278184>] i2c_new_client_device+0x359/0x4f0
[<0000000070baf34f>] of_i2c_register_device+0xf1/0x110
[<00000000a9f2159d>] of_i2c_notify+0x100/0x160
unreferenced object 0xffff888119825c00 (size 256):
comm "python3", pid 279, jiffies 4294805921 (age 20.681s)
hex dump (first 32 bytes):
00 b4 a5 17 81 88 ff ff 00 5e 82 19 81 88 ff ff .........^......
10 5c 82 19 81 88 ff ff 10 5c 82 19 81 88 ff ff .\.......\......
backtrace:
[<000000009990b438>] __kmalloc_node+0x44/0x1b0
[<000000009e32f7d7>] kvmalloc_node+0x34/0x180
[<0000000073d88e0b>] v4l2_ctrl_new.cold+0x19b/0x86f [videodev]
[<00000000b1f576fb>] v4l2_ctrl_new_std+0x16f/0x210 [videodev]
[<00000000caf7ac99>] ov772x_probe+0x1fa/0x68c [ov772x]
[<000000003f0d225e>] i2c_device_probe+0x28d/0x680
[<00000000e0b6db89>] really_probe+0x17c/0x3f0
[<000000001b19fcee>] __driver_probe_device+0xe3/0x170
[<0000000048370519>] driver_probe_device+0x49/0x120
[<000000005ead07a0>] __device_attach_driver+0xf7/0x150
[<0000000043f452b8>] bus_for_each_drv+0x114/0x180
[<00000000358e5596>] __device_attach+0x1e5/0x2d0
[<0000000043f83c5d>] bus_probe_device+0x126/0x140
[<00000000ee0f3046>] device_add+0x810/0x1130
[<00000000e0278184>] i2c_new_client_device+0x359/0x4f0
[<0000000070baf34f>] of_i2c_register_device+0xf1/0x110
The reason is that if priv->hdl.error is set, ov772x_probe() jumps to the
error_mutex_destroy without doing v4l2_ctrl_handler_free(), and all
resources allocated in v4l2_ctrl_handler_init() and v4l2_ctrl_new_std()
are leaked. |
In the Linux kernel, the following vulnerability has been resolved:
fbdev: omapfb: lcd_mipid: Fix an error handling path in mipid_spi_probe()
If 'mipid_detect()' fails, we must free 'md' to avoid a memory leak. |