Search
Search Results (187 CVEs found)
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2018-16395 | 4 Canonical, Debian, Redhat and 1 more | 7 Ubuntu Linux, Debian Linux, Enterprise Linux and 4 more | 2024-11-21 | N/A |
| An issue was discovered in the OpenSSL library in Ruby before 2.3.8, 2.4.x before 2.4.5, 2.5.x before 2.5.2, and 2.6.x before 2.6.0-preview3. When two OpenSSL::X509::Name objects are compared using ==, depending on the ordering, non-equal objects may return true. When the first argument is one character longer than the second, or the second argument contains a character that is one less than a character in the same position of the first argument, the result of == will be true. This could be leveraged to create an illegitimate certificate that may be accepted as legitimate and then used in signing or encryption operations. | ||||
| CVE-2018-0739 | 4 Canonical, Debian, Openssl and 1 more | 6 Ubuntu Linux, Debian Linux, Openssl and 3 more | 2024-11-21 | N/A |
| Constructed ASN.1 types with a recursive definition (such as can be found in PKCS7) could eventually exceed the stack given malicious input with excessive recursion. This could result in a Denial Of Service attack. There are no such structures used within SSL/TLS that come from untrusted sources so this is considered safe. Fixed in OpenSSL 1.1.0h (Affected 1.1.0-1.1.0g). Fixed in OpenSSL 1.0.2o (Affected 1.0.2b-1.0.2n). | ||||
| CVE-2018-0737 | 3 Canonical, Openssl, Redhat | 4 Ubuntu Linux, Openssl, Enterprise Linux and 1 more | 2024-11-21 | N/A |
| The OpenSSL RSA Key generation algorithm has been shown to be vulnerable to a cache timing side channel attack. An attacker with sufficient access to mount cache timing attacks during the RSA key generation process could recover the private key. Fixed in OpenSSL 1.1.0i-dev (Affected 1.1.0-1.1.0h). Fixed in OpenSSL 1.0.2p-dev (Affected 1.0.2b-1.0.2o). | ||||
| CVE-2018-0735 | 7 Canonical, Debian, Netapp and 4 more | 24 Ubuntu Linux, Debian Linux, Cloud Backup and 21 more | 2024-11-21 | 5.9 Medium |
| The OpenSSL ECDSA signature algorithm has been shown to be vulnerable to a timing side channel attack. An attacker could use variations in the signing algorithm to recover the private key. Fixed in OpenSSL 1.1.0j (Affected 1.1.0-1.1.0i). Fixed in OpenSSL 1.1.1a (Affected 1.1.1). | ||||
| CVE-2018-0734 | 7 Canonical, Debian, Netapp and 4 more | 23 Ubuntu Linux, Debian Linux, Cloud Backup and 20 more | 2024-11-21 | 5.9 Medium |
| The OpenSSL DSA signature algorithm has been shown to be vulnerable to a timing side channel attack. An attacker could use variations in the signing algorithm to recover the private key. Fixed in OpenSSL 1.1.1a (Affected 1.1.1). Fixed in OpenSSL 1.1.0j (Affected 1.1.0-1.1.0i). Fixed in OpenSSL 1.0.2q (Affected 1.0.2-1.0.2p). | ||||
| CVE-2018-0732 | 5 Canonical, Debian, Nodejs and 2 more | 7 Ubuntu Linux, Debian Linux, Node.js and 4 more | 2024-11-21 | 7.5 High |
| During key agreement in a TLS handshake using a DH(E) based ciphersuite a malicious server can send a very large prime value to the client. This will cause the client to spend an unreasonably long period of time generating a key for this prime resulting in a hang until the client has finished. This could be exploited in a Denial Of Service attack. Fixed in OpenSSL 1.1.0i-dev (Affected 1.1.0-1.1.0h). Fixed in OpenSSL 1.0.2p-dev (Affected 1.0.2-1.0.2o). | ||||
| CVE-2016-7056 | 4 Canonical, Debian, Openssl and 1 more | 6 Ubuntu Linux, Debian Linux, Openssl and 3 more | 2024-11-21 | N/A |
| A timing attack flaw was found in OpenSSL 1.0.1u and before that could allow a malicious user with local access to recover ECDSA P-256 private keys. | ||||