Search Results (187 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2018-16395 4 Canonical, Debian, Redhat and 1 more 7 Ubuntu Linux, Debian Linux, Enterprise Linux and 4 more 2024-11-21 N/A
An issue was discovered in the OpenSSL library in Ruby before 2.3.8, 2.4.x before 2.4.5, 2.5.x before 2.5.2, and 2.6.x before 2.6.0-preview3. When two OpenSSL::X509::Name objects are compared using ==, depending on the ordering, non-equal objects may return true. When the first argument is one character longer than the second, or the second argument contains a character that is one less than a character in the same position of the first argument, the result of == will be true. This could be leveraged to create an illegitimate certificate that may be accepted as legitimate and then used in signing or encryption operations.
CVE-2018-0739 4 Canonical, Debian, Openssl and 1 more 6 Ubuntu Linux, Debian Linux, Openssl and 3 more 2024-11-21 N/A
Constructed ASN.1 types with a recursive definition (such as can be found in PKCS7) could eventually exceed the stack given malicious input with excessive recursion. This could result in a Denial Of Service attack. There are no such structures used within SSL/TLS that come from untrusted sources so this is considered safe. Fixed in OpenSSL 1.1.0h (Affected 1.1.0-1.1.0g). Fixed in OpenSSL 1.0.2o (Affected 1.0.2b-1.0.2n).
CVE-2018-0737 3 Canonical, Openssl, Redhat 4 Ubuntu Linux, Openssl, Enterprise Linux and 1 more 2024-11-21 N/A
The OpenSSL RSA Key generation algorithm has been shown to be vulnerable to a cache timing side channel attack. An attacker with sufficient access to mount cache timing attacks during the RSA key generation process could recover the private key. Fixed in OpenSSL 1.1.0i-dev (Affected 1.1.0-1.1.0h). Fixed in OpenSSL 1.0.2p-dev (Affected 1.0.2b-1.0.2o).
CVE-2018-0735 7 Canonical, Debian, Netapp and 4 more 24 Ubuntu Linux, Debian Linux, Cloud Backup and 21 more 2024-11-21 5.9 Medium
The OpenSSL ECDSA signature algorithm has been shown to be vulnerable to a timing side channel attack. An attacker could use variations in the signing algorithm to recover the private key. Fixed in OpenSSL 1.1.0j (Affected 1.1.0-1.1.0i). Fixed in OpenSSL 1.1.1a (Affected 1.1.1).
CVE-2018-0734 7 Canonical, Debian, Netapp and 4 more 23 Ubuntu Linux, Debian Linux, Cloud Backup and 20 more 2024-11-21 5.9 Medium
The OpenSSL DSA signature algorithm has been shown to be vulnerable to a timing side channel attack. An attacker could use variations in the signing algorithm to recover the private key. Fixed in OpenSSL 1.1.1a (Affected 1.1.1). Fixed in OpenSSL 1.1.0j (Affected 1.1.0-1.1.0i). Fixed in OpenSSL 1.0.2q (Affected 1.0.2-1.0.2p).
CVE-2018-0732 5 Canonical, Debian, Nodejs and 2 more 7 Ubuntu Linux, Debian Linux, Node.js and 4 more 2024-11-21 7.5 High
During key agreement in a TLS handshake using a DH(E) based ciphersuite a malicious server can send a very large prime value to the client. This will cause the client to spend an unreasonably long period of time generating a key for this prime resulting in a hang until the client has finished. This could be exploited in a Denial Of Service attack. Fixed in OpenSSL 1.1.0i-dev (Affected 1.1.0-1.1.0h). Fixed in OpenSSL 1.0.2p-dev (Affected 1.0.2-1.0.2o).
CVE-2016-7056 4 Canonical, Debian, Openssl and 1 more 6 Ubuntu Linux, Debian Linux, Openssl and 3 more 2024-11-21 N/A
A timing attack flaw was found in OpenSSL 1.0.1u and before that could allow a malicious user with local access to recover ECDSA P-256 private keys.