| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A Broken Object Level Authorization (BOLA) vulnerability was discovered in the tRPC project mutation APIs (update, delete, add/remove tag) of the Onlook web application 0.2.32. The vulnerability exists because the API fails to verify the ownership or membership of the currently authenticated user for the requested project ID. An authenticated attacker can send a malicious request containing another user's project ID to unlawfully modify, delete, or manipulate tags on that project, which can severely compromise data integrity and availability. |
| Missing Authorization vulnerability in g5theme Essential Real Estate essential-real-estate allows Exploiting Incorrectly Configured Access Control Security Levels.This issue affects Essential Real Estate: from n/a through <= 5.2.2. |
| CrushFTP11 before 11.3.7_57 is vulnerable to stored HTML injection in the CrushFTP Admin Panel (Reports / "Who Created Folder"), enabling persistent HTML execution in admin sessions. |
| XML Injection (aka Blind XPath Injection) vulnerability in Drupal Central Authentication System (CAS) Server allows Privilege Escalation.This issue affects Central Authentication System (CAS) Server: from 0.0.0 before 2.0.3, from 2.1.0 before 2.1.2. |
| A vulnerability was identified in iomad up to 5.0. Affected is an unknown function of the component Company Admin Block. Such manipulation leads to sql injection. The attack can be executed remotely. It is best practice to apply a patch to resolve this issue. |
| Tiny File Manager through 2.6 contains a server-side request forgery (SSRF) vulnerability in the URL upload feature. Due to insufficient validation of user-supplied URLs, an attacker can send crafted requests to localhost by using http://www.127.0.0.1.example.com/ or a similarly constructed domain name. This may lead to unauthorized port scanning or access to internal-only services. |
| KaTeX is a JavaScript library for TeX math rendering on the web. KaTeX users who render untrusted mathematical expressions could encounter malicious input using `\edef` that causes a near-infinite loop, despite setting `maxExpand` to avoid such loops. This can be used as an availability attack, where e.g. a client rendering another user's KaTeX input will be unable to use the site due to memory overflow, tying up the main thread, or stack overflow. Upgrade to KaTeX v0.16.10 to remove this vulnerability. |
| Tanium addressed a SQL injection vulnerability in Asset. |
| Tanium addressed an improper access controls vulnerability in Tanium Server. |
| Tanium addressed an improper access controls vulnerability in Interact. |
| A vulnerability has been found in WeKan up to 8.20. Affected by this vulnerability is the function ComprehensiveBoardMigration of the file server/migrations/comprehensiveBoardMigration.js of the component Migration Operation Handler. The manipulation of the argument boardId leads to improper access controls. The attack is possible to be carried out remotely. Upgrading to version 8.21 addresses this issue. The identifier of the patch is cc35dafef57ef6e44a514a523f9a8d891e74ad8f. Upgrading the affected component is advised. |
| Improper access control in InputManager to SMR Apr-2025 Release 1 allows local attackers to access the scancode of specific input device. |
| A vulnerability was found in WeKan up to 8.20. Affected by this issue is some unknown functionality of the file server/methods/positionHistory.js of the component Position-History Tracking. The manipulation results in missing authorization. The attack may be performed from remote. Upgrading to version 8.21 can resolve this issue. The patch is identified as 55576ec17722db094835470b386162c9a662fb60. It is advisable to upgrade the affected component. |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/amd: Fix pci device refcount leak in ppr_notifier()
As comment of pci_get_domain_bus_and_slot() says, it returns
a pci device with refcount increment, when finish using it,
the caller must decrement the reference count by calling
pci_dev_put(). So call it before returning from ppr_notifier()
to avoid refcount leak. |
| In the Linux kernel, the following vulnerability has been resolved:
drbd: only clone bio if we have a backing device
Commit c347a787e34cb (drbd: set ->bi_bdev in drbd_req_new) moved a
bio_set_dev call (which has since been removed) to "earlier", from
drbd_request_prepare to drbd_req_new.
The problem is that this accesses device->ldev->backing_bdev, which is
not NULL-checked at this point. When we don't have an ldev (i.e. when
the DRBD device is diskless), this leads to a null pointer deref.
So, only allocate the private_bio if we actually have a disk. This is
also a small optimization, since we don't clone the bio to only to
immediately free it again in the diskless case. |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Validate data run offset
This adds sanity checks for data run offset. We should make sure data
run offset is legit before trying to unpack them, otherwise we may
encounter use-after-free or some unexpected memory access behaviors.
[ 82.940342] BUG: KASAN: use-after-free in run_unpack+0x2e3/0x570
[ 82.941180] Read of size 1 at addr ffff888008a8487f by task mount/240
[ 82.941670]
[ 82.942069] CPU: 0 PID: 240 Comm: mount Not tainted 5.19.0+ #15
[ 82.942482] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[ 82.943720] Call Trace:
[ 82.944204] <TASK>
[ 82.944471] dump_stack_lvl+0x49/0x63
[ 82.944908] print_report.cold+0xf5/0x67b
[ 82.945141] ? __wait_on_bit+0x106/0x120
[ 82.945750] ? run_unpack+0x2e3/0x570
[ 82.946626] kasan_report+0xa7/0x120
[ 82.947046] ? run_unpack+0x2e3/0x570
[ 82.947280] __asan_load1+0x51/0x60
[ 82.947483] run_unpack+0x2e3/0x570
[ 82.947709] ? memcpy+0x4e/0x70
[ 82.947927] ? run_pack+0x7a0/0x7a0
[ 82.948158] run_unpack_ex+0xad/0x3f0
[ 82.948399] ? mi_enum_attr+0x14a/0x200
[ 82.948717] ? run_unpack+0x570/0x570
[ 82.949072] ? ni_enum_attr_ex+0x1b2/0x1c0
[ 82.949332] ? ni_fname_type.part.0+0xd0/0xd0
[ 82.949611] ? mi_read+0x262/0x2c0
[ 82.949970] ? ntfs_cmp_names_cpu+0x125/0x180
[ 82.950249] ntfs_iget5+0x632/0x1870
[ 82.950621] ? ntfs_get_block_bmap+0x70/0x70
[ 82.951192] ? evict+0x223/0x280
[ 82.951525] ? iput.part.0+0x286/0x320
[ 82.951969] ntfs_fill_super+0x1321/0x1e20
[ 82.952436] ? put_ntfs+0x1d0/0x1d0
[ 82.952822] ? vsprintf+0x20/0x20
[ 82.953188] ? mutex_unlock+0x81/0xd0
[ 82.953379] ? set_blocksize+0x95/0x150
[ 82.954001] get_tree_bdev+0x232/0x370
[ 82.954438] ? put_ntfs+0x1d0/0x1d0
[ 82.954700] ntfs_fs_get_tree+0x15/0x20
[ 82.955049] vfs_get_tree+0x4c/0x130
[ 82.955292] path_mount+0x645/0xfd0
[ 82.955615] ? putname+0x80/0xa0
[ 82.955955] ? finish_automount+0x2e0/0x2e0
[ 82.956310] ? kmem_cache_free+0x110/0x390
[ 82.956723] ? putname+0x80/0xa0
[ 82.957023] do_mount+0xd6/0xf0
[ 82.957411] ? path_mount+0xfd0/0xfd0
[ 82.957638] ? __kasan_check_write+0x14/0x20
[ 82.957948] __x64_sys_mount+0xca/0x110
[ 82.958310] do_syscall_64+0x3b/0x90
[ 82.958719] entry_SYSCALL_64_after_hwframe+0x63/0xcd
[ 82.959341] RIP: 0033:0x7fd0d1ce948a
[ 82.960193] Code: 48 8b 0d 11 fa 2a 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 49 89 ca b8 a5 00 00 008
[ 82.961532] RSP: 002b:00007ffe59ff69a8 EFLAGS: 00000202 ORIG_RAX: 00000000000000a5
[ 82.962527] RAX: ffffffffffffffda RBX: 0000564dcc107060 RCX: 00007fd0d1ce948a
[ 82.963266] RDX: 0000564dcc107260 RSI: 0000564dcc1072e0 RDI: 0000564dcc10fce0
[ 82.963686] RBP: 0000000000000000 R08: 0000564dcc107280 R09: 0000000000000020
[ 82.964272] R10: 00000000c0ed0000 R11: 0000000000000202 R12: 0000564dcc10fce0
[ 82.964785] R13: 0000564dcc107260 R14: 0000000000000000 R15: 00000000ffffffff |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt76x0: fix oob access in mt76x0_phy_get_target_power
After 'commit ba45841ca5eb ("wifi: mt76: mt76x02: simplify struct
mt76x02_rate_power")', mt76x02 relies on ht[0-7] rate_power data for
vht mcs{0,7}, while it uses vth[0-1] rate_power for vht mcs {8,9}.
Fix a possible out-of-bound access in mt76x0_phy_get_target_power routine. |
| Improper Verification of Intent by Broadcast Receiver in DeviceIdService prior to SMR Apr-2025 Release 1 allows local attackers to reset OAID. |
| Out-of-bounds write in secfr trustlet prior to SMR Apr-2025 Release 1 allows local privileged attackers to cause memory corruption. |
| A vulnerability was discovered in RISC-V Rocket-Chip v1.6 and before implementation where the SRET (Supervisor-mode Exception Return) instruction fails to correctly transition the processor's privilege level. Instead of downgrading from Machine-mode (M-mode) to Supervisor-mode (S-mode) as specified by the sstatus.SPP bit, the processor incorrectly remains in M-mode, leading to a critical privilege retention vulnerability. |