| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Screen SFT DAB 1.9.3 contains a weak session management vulnerability that allows attackers to bypass authentication controls by reusing IP address-bound session identifiers. Attackers can exploit the vulnerable API by intercepting and reusing established sessions to remove user accounts without proper authorization. |
| A Reflected Cross-Site Scripting (XSS) vulnerability exists in phpMsAdmin version 2.2 in the database_mode.php file. An attacker can execute arbitrary web script or HTML via the dbname parameter after a user is authenticated. |
| WeGIA is an open source Web Manager for Institutions with a focus on Portuguese language users. Versions 3.5.4 and below contain an SQL Injection vulnerability in the /html/matPat/editar_categoria.php endpoint. The application fails to properly validate and sanitize user inputs in the id_categoria parameter, which allows attackers to inject malicious SQL payloads for direct execution. This issue is fixed in version 3.5.5. |
| WeGIA is an open source Web Manager for Institutions with a focus on Portuguese language users. Versions 3.5.4 and below contain a Stored Cross-Site Scripting (XSS) vulnerability in the /WeGIA/html/geral/configurar_senhas.php endpoint. The application does not sanitize user-controlled data before rendering it inside the employee selection dropdown. The application retrieves employee names from the database and injects them directly into HTML <option> elements without proper escaping. This issue is fixed in version 3.5.5. |
| In the Linux kernel, the following vulnerability has been resolved:
fbdev: Fix do_register_framebuffer to prevent null-ptr-deref in fb_videomode_to_var
If fb_add_videomode() in do_register_framebuffer() fails to allocate
memory for fb_videomode, it will later lead to a null-ptr dereference in
fb_videomode_to_var(), as the fb_info is registered while not having the
mode in modelist that is expected to be there, i.e. the one that is
described in fb_info->var.
================================================================
general protection fault, probably for non-canonical address 0xdffffc0000000001: 0000 [#1] PREEMPT SMP KASAN NOPTI
KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f]
CPU: 1 PID: 30371 Comm: syz-executor.1 Not tainted 5.10.226-syzkaller #0
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014
RIP: 0010:fb_videomode_to_var+0x24/0x610 drivers/video/fbdev/core/modedb.c:901
Call Trace:
display_to_var+0x3a/0x7c0 drivers/video/fbdev/core/fbcon.c:929
fbcon_resize+0x3e2/0x8f0 drivers/video/fbdev/core/fbcon.c:2071
resize_screen drivers/tty/vt/vt.c:1176 [inline]
vc_do_resize+0x53a/0x1170 drivers/tty/vt/vt.c:1263
fbcon_modechanged+0x3ac/0x6e0 drivers/video/fbdev/core/fbcon.c:2720
fbcon_update_vcs+0x43/0x60 drivers/video/fbdev/core/fbcon.c:2776
do_fb_ioctl+0x6d2/0x740 drivers/video/fbdev/core/fbmem.c:1128
fb_ioctl+0xe7/0x150 drivers/video/fbdev/core/fbmem.c:1203
vfs_ioctl fs/ioctl.c:48 [inline]
__do_sys_ioctl fs/ioctl.c:753 [inline]
__se_sys_ioctl fs/ioctl.c:739 [inline]
__x64_sys_ioctl+0x19a/0x210 fs/ioctl.c:739
do_syscall_64+0x33/0x40 arch/x86/entry/common.c:46
entry_SYSCALL_64_after_hwframe+0x67/0xd1
================================================================
Even though fbcon_init() checks beforehand if fb_match_mode() in
var_to_display() fails, it can not prevent the panic because fbcon_init()
does not return error code. Considering this and the comment in the code
about fb_match_mode() returning NULL - "This should not happen" - it is
better to prevent registering the fb_info if its mode was not set
successfully. Also move fb_add_videomode() closer to the beginning of
do_register_framebuffer() to avoid having to do the cleanup on fail.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to do sanity check on sit_bitmap_size
w/ below testcase, resize will generate a corrupted image which
contains inconsistent metadata, so when mounting such image, it
will trigger kernel panic:
touch img
truncate -s $((512*1024*1024*1024)) img
mkfs.f2fs -f img $((256*1024*1024))
resize.f2fs -s -i img -t $((1024*1024*1024))
mount img /mnt/f2fs
------------[ cut here ]------------
kernel BUG at fs/f2fs/segment.h:863!
Oops: invalid opcode: 0000 [#1] SMP PTI
CPU: 11 UID: 0 PID: 3922 Comm: mount Not tainted 6.15.0-rc1+ #191 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
RIP: 0010:f2fs_ra_meta_pages+0x47c/0x490
Call Trace:
f2fs_build_segment_manager+0x11c3/0x2600
f2fs_fill_super+0xe97/0x2840
mount_bdev+0xf4/0x140
legacy_get_tree+0x2b/0x50
vfs_get_tree+0x29/0xd0
path_mount+0x487/0xaf0
__x64_sys_mount+0x116/0x150
do_syscall_64+0x82/0x190
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7fdbfde1bcfe
The reaseon is:
sit_i->bitmap_size is 192, so size of sit bitmap is 192*8=1536, at maximum
there are 1536 sit blocks, however MAIN_SEGS is 261893, so that sit_blk_cnt
is 4762, build_sit_entries() -> current_sit_addr() tries to access
out-of-boundary in sit_bitmap at offset from [1536, 4762), once sit_bitmap
and sit_bitmap_mirror is not the same, it will trigger f2fs_bug_on().
Let's add sanity check in f2fs_sanity_check_ckpt() to avoid panic. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: prevent kernel warning due to negative i_nlink from corrupted image
WARNING: CPU: 1 PID: 9426 at fs/inode.c:417 drop_nlink+0xac/0xd0
home/cc/linux/fs/inode.c:417
Modules linked in:
CPU: 1 UID: 0 PID: 9426 Comm: syz-executor568 Not tainted
6.14.0-12627-g94d471a4f428 #2 PREEMPT(full)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
1.13.0-1ubuntu1.1 04/01/2014
RIP: 0010:drop_nlink+0xac/0xd0 home/cc/linux/fs/inode.c:417
Code: 48 8b 5d 28 be 08 00 00 00 48 8d bb 70 07 00 00 e8 f9 67 e6 ff
f0 48 ff 83 70 07 00 00 5b 5d e9 9a 12 82 ff e8 95 12 82 ff 90
<0f> 0b 90 c7 45 48 ff ff ff ff 5b 5d e9 83 12 82 ff e8 fe 5f e6
ff
RSP: 0018:ffffc900026b7c28 EFLAGS: 00010293
RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffffff8239710f
RDX: ffff888041345a00 RSI: ffffffff8239717b RDI: 0000000000000005
RBP: ffff888054509ad0 R08: 0000000000000005 R09: 0000000000000000
R10: 0000000000000000 R11: ffffffff9ab36f08 R12: ffff88804bb40000
R13: ffff8880545091e0 R14: 0000000000008000 R15: ffff8880545091e0
FS: 000055555d0c5880(0000) GS:ffff8880eb3e3000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f915c55b178 CR3: 0000000050d20000 CR4: 0000000000352ef0
Call Trace:
<task>
f2fs_i_links_write home/cc/linux/fs/f2fs/f2fs.h:3194 [inline]
f2fs_drop_nlink+0xd1/0x3c0 home/cc/linux/fs/f2fs/dir.c:845
f2fs_delete_entry+0x542/0x1450 home/cc/linux/fs/f2fs/dir.c:909
f2fs_unlink+0x45c/0x890 home/cc/linux/fs/f2fs/namei.c:581
vfs_unlink+0x2fb/0x9b0 home/cc/linux/fs/namei.c:4544
do_unlinkat+0x4c5/0x6a0 home/cc/linux/fs/namei.c:4608
__do_sys_unlink home/cc/linux/fs/namei.c:4654 [inline]
__se_sys_unlink home/cc/linux/fs/namei.c:4652 [inline]
__x64_sys_unlink+0xc5/0x110 home/cc/linux/fs/namei.c:4652
do_syscall_x64 home/cc/linux/arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xc7/0x250 home/cc/linux/arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7fb3d092324b
Code: 73 01 c3 48 c7 c1 c0 ff ff ff f7 d8 64 89 01 48 83 c8 ff c3 66
2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa b8 57 00 00 00 0f 05
<48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 c0 ff ff ff f7 d8 64 89 01
48
RSP: 002b:00007ffdc232d938 EFLAGS: 00000206 ORIG_RAX: 0000000000000057
RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007fb3d092324b
RDX: 00007ffdc232d960 RSI: 00007ffdc232d960 RDI: 00007ffdc232d9f0
RBP: 00007ffdc232d9f0 R08: 0000000000000001 R09: 00007ffdc232d7c0
R10: 00000000fffffffd R11: 0000000000000206 R12: 00007ffdc232eaf0
R13: 000055555d0cebb0 R14: 00007ffdc232d958 R15: 0000000000000001
</task> |
| In limited scenarios, sensitive data might be written to the log file if an admin uses Microsoft Teams Admin Center (TAC) to make device configuration changes. The affected log file is visible only to users with admin credentials. This is limited to Microsoft TAC and does not affect configuration changes made using the provisioning server or the device WebUI. |
| A command injection vulnerability exists in Windscribe for Linux Desktop App that allows a local user who is a member of the windscribe group to execute arbitrary commands as root via the 'adapterName' parameter of the 'changeMTU' function. Fixed in Windscribe v2.18.3-alpha and v2.18.8. |
| Use after free in WebGPU in Google Chrome prior to 143.0.7499.147 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: High) |
| Open Source Point of Sale (opensourcepos) is a web based point of sale application written in PHP using CodeIgniter framework. Starting in version 3.4.0 and prior to version 3.4.2, a Stored Cross-Site Scripting (XSS) vulnerability exists in the "Return Policy" configuration field. The application does not properly sanitize user input before saving it to the database or displaying it on receipts. An attacker with access to the "Store Configuration" (such as a rogue administrator or an account compromised via the separate CSRF vulnerability) can inject malicious JavaScript payloads into this field. These payloads are executed in the browser of any user (including other administrators and sales staff) whenever they view a receipt or complete a transaction. This can lead to session hijacking, theft of sensitive data, or unauthorized actions performed on behalf of the victim. The vulnerability has been patched in version 3.4.2 by ensuring the output is escaped using the `esc()` function in the receipt template. As a temporary mitigation, administrators should ensure the "Return Policy" field contains only plain text and strictly avoid entering any HTML tags. There is no code-based workaround other than applying the patch. |
| A Cross-site scripting (XSS) vulnerability in Create/Update Item Kit(s) in Open Source Point of Sale v3.4.1 allows remote attackers to inject arbitrary web script or HTML via the "name" parameter. |
| A Cross-site scripting (XSS) vulnerability in Create/Update Customer(s) in Open Source Point of Sale v3.4.1 allows remote attackers to inject arbitrary web script or HTML via the phone_number parameter. |
| A Cross-site scripting (XSS) vulnerability in Create/Update Item(s) Module in Open Source Point of Sale v3.4.1 allows remote attackers to inject arbitrary web script or HTML via the "name" parameter. |
| AVideo versions prior to 20.0 with the ImageGallery plugin enabled is vulnerable to unauthenticated file upload and deletion. Plugin endpoints responsible for managing gallery images fail to enforce authentication checks and do not validate ownership, allowing unauthenticated attackers to upload or delete images associated with any image-based video. |
| AVideo versions prior to 20.0 are vulnerable to an insecure direct object reference (IDOR) that allows any authenticated user to delete media files belonging to other users. The affected endpoint validates authentication but fails to verify ownership or edit permissions for the targeted video. |
| AVideo versions prior to 20.0 allow any authenticated user to upload files into directories belonging to other users due to an insecure direct object reference. The upload functionality verifies authentication but does not enforce ownership checks. |
| AVideo versions prior to 20.0 permit any authenticated user to upload comment images to videos owned by other users. The endpoint validates authentication but omits ownership checks, allowing attackers to perform unauthorized uploads to arbitrary video objects. |
| AVideo versions prior to 20.0 contain an insecure direct object reference vulnerability allowing users with upload permissions to modify the rotation metadata of any video. The endpoint verifies upload capability but fails to enforce ownership or management rights for the targeted video. |
| AVideo versions prior to 20.0 are vulnerable to an open redirect flaw due to missing validation of the cancelUri parameter during user login. An attacker can craft a link to redirect users to arbitrary external sites, enabling phishing attacks. |