| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
fs: ext4: change GFP_KERNEL to GFP_NOFS to avoid deadlock
The parent function ext4_xattr_inode_lookup_create already uses GFP_NOFS for memory alloction, so the function ext4_xattr_inode_cache_find should use same gfp_flag. |
| In the Linux kernel, the following vulnerability has been resolved:
ceph: fix multifs mds auth caps issue
The mds auth caps check should also validate the
fsname along with the associated caps. Not doing
so would result in applying the mds auth caps of
one fs on to the other fs in a multifs ceph cluster.
The bug causes multiple issues w.r.t user
authentication, following is one such example.
Steps to Reproduce (on vstart cluster):
1. Create two file systems in a cluster, say 'fsname1' and 'fsname2'
2. Authorize read only permission to the user 'client.usr' on fs 'fsname1'
$ceph fs authorize fsname1 client.usr / r
3. Authorize read and write permission to the same user 'client.usr' on fs 'fsname2'
$ceph fs authorize fsname2 client.usr / rw
4. Update the keyring
$ceph auth get client.usr >> ./keyring
With above permssions for the user 'client.usr', following is the
expectation.
a. The 'client.usr' should be able to only read the contents
and not allowed to create or delete files on file system 'fsname1'.
b. The 'client.usr' should be able to read/write on file system 'fsname2'.
But, with this bug, the 'client.usr' is allowed to read/write on file
system 'fsname1'. See below.
5. Mount the file system 'fsname1' with the user 'client.usr'
$sudo bin/mount.ceph usr@.fsname1=/ /kmnt_fsname1_usr/
6. Try creating a file on file system 'fsname1' with user 'client.usr'. This
should fail but passes with this bug.
$touch /kmnt_fsname1_usr/file1
7. Mount the file system 'fsname1' with the user 'client.admin' and create a
file.
$sudo bin/mount.ceph admin@.fsname1=/ /kmnt_fsname1_admin
$echo "data" > /kmnt_fsname1_admin/admin_file1
8. Try removing an existing file on file system 'fsname1' with the user
'client.usr'. This shoudn't succeed but succeeds with the bug.
$rm -f /kmnt_fsname1_usr/admin_file1
For more information, please take a look at the corresponding mds/fuse patch
and tests added by looking into the tracker mentioned below.
v2: Fix a possible null dereference in doutc
v3: Don't store fsname from mdsmap, validate against
ceph_mount_options's fsname and use it
v4: Code refactor, better warning message and
fix possible compiler warning
[ Slava.Dubeyko: "fsname check failed" -> "fsname mismatch" ] |
| In the Linux kernel, the following vulnerability has been resolved:
gpiolib: fix invalid pointer access in debugfs
If the memory allocation in gpiolib_seq_start() fails, the s->private
field remains uninitialized and is later dereferenced without checking
in gpiolib_seq_stop(). Initialize s->private to NULL before calling
kzalloc() and check it before dereferencing it. |
| In the Linux kernel, the following vulnerability has been resolved:
netpoll: Fix deadlock in memory allocation under spinlock
Fix a AA deadlock in refill_skbs() where memory allocation while holding
skb_pool->lock can trigger a recursive lock acquisition attempt.
The deadlock scenario occurs when the system is under severe memory
pressure:
1. refill_skbs() acquires skb_pool->lock (spinlock)
2. alloc_skb() is called while holding the lock
3. Memory allocator fails and calls slab_out_of_memory()
4. This triggers printk() for the OOM warning
5. The console output path calls netpoll_send_udp()
6. netpoll_send_udp() attempts to acquire the same skb_pool->lock
7. Deadlock: the lock is already held by the same CPU
Call stack:
refill_skbs()
spin_lock_irqsave(&skb_pool->lock) <- lock acquired
__alloc_skb()
kmem_cache_alloc_node_noprof()
slab_out_of_memory()
printk()
console_flush_all()
netpoll_send_udp()
skb_dequeue()
spin_lock_irqsave(&skb_pool->lock) <- deadlock attempt
This bug was exposed by commit 248f6571fd4c51 ("netpoll: Optimize skb
refilling on critical path") which removed refill_skbs() from the
critical path (where nested printk was being deferred), letting nested
printk being called from inside refill_skbs()
Refactor refill_skbs() to never allocate memory while holding
the spinlock.
Another possible solution to fix this problem is protecting the
refill_skbs() from nested printks, basically calling
printk_deferred_{enter,exit}() in refill_skbs(), then, any nested
pr_warn() would be deferred.
I prefer this approach, given I _think_ it might be a good idea to move
the alloc_skb() from GFP_ATOMIC to GFP_KERNEL in the future, so, having
the alloc_skb() outside of the lock will be necessary step.
There is a possible TOCTOU issue when checking for the pool length, and
queueing the new allocated skb, but, this is not an issue, given that
an extra SKB in the pool is harmless and it will be eventually used. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/radeon: Do not kfree() devres managed rdev
Since the allocation of the drivers main structure was changed to
devm_drm_dev_alloc() rdev is managed by devres and we shouldn't be calling
kfree() on it.
This fixes things exploding if the driver probe fails and devres cleans up
the rdev after we already free'd it.
(cherry picked from commit 16c0681617b8a045773d4d87b6140002fa75b03b) |
| In the Linux kernel, the following vulnerability has been resolved:
ftrace: Fix softlockup in ftrace_module_enable
A soft lockup was observed when loading amdgpu module.
If a module has a lot of tracable functions, multiple calls
to kallsyms_lookup can spend too much time in RCU critical
section and with disabled preemption, causing kernel panic.
This is the same issue that was fixed in
commit d0b24b4e91fc ("ftrace: Prevent RCU stall on PREEMPT_VOLUNTARY
kernels") and commit 42ea22e754ba ("ftrace: Add cond_resched() to
ftrace_graph_set_hash()").
Fix it the same way by adding cond_resched() in ftrace_module_enable. |
| In the Linux kernel, the following vulnerability has been resolved:
cpufreq/longhaul: handle NULL policy in longhaul_exit
longhaul_exit() was calling cpufreq_cpu_get(0) without checking
for a NULL policy pointer. On some systems, this could lead to a
NULL dereference and a kernel warning or panic.
This patch adds a check using unlikely() and returns early if the
policy is NULL.
Bugzilla: #219962 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/radeon: Remove calls to drm_put_dev()
Since the allocation of the drivers main structure was changed to
devm_drm_dev_alloc() drm_put_dev()'ing to trigger it to be free'd
should be done by devres.
However, drm_put_dev() is still in the probe error and device remove
paths. When the driver fails to probe warnings like the following are
shown because devres is trying to drm_put_dev() after the driver
already did it.
[ 5.642230] radeon 0000:01:05.0: probe with driver radeon failed with error -22
[ 5.649605] ------------[ cut here ]------------
[ 5.649607] refcount_t: underflow; use-after-free.
[ 5.649620] WARNING: CPU: 0 PID: 357 at lib/refcount.c:28 refcount_warn_saturate+0xbe/0x110
(cherry picked from commit 3eb8c0b4c091da0a623ade0d3ee7aa4a93df1ea4) |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: fix potential use after free in iwl_mld_remove_link()
This code frees "link" by calling kfree_rcu(link, rcu_head) and then it
dereferences "link" to get the "link->fw_id". Save the "link->fw_id"
first to avoid a potential use after free. |
| In the Linux kernel, the following vulnerability has been resolved:
net: mdio: Check regmap pointer returned by device_node_to_regmap()
The call to device_node_to_regmap() in airoha_mdio_probe() can return
an ERR_PTR() if regmap initialization fails. Currently, the driver
stores the pointer without validation, which could lead to a crash
if it is later dereferenced.
Add an IS_ERR() check and return the corresponding error code to make
the probe path more robust. |
| In the Linux kernel, the following vulnerability has been resolved:
udp_tunnel: use netdev_warn() instead of netdev_WARN()
netdev_WARN() uses WARN/WARN_ON to print a backtrace along with
file and line information. In this case, udp_tunnel_nic_register()
returning an error is just a failed operation, not a kernel bug.
udp_tunnel_nic_register() can fail due to a memory allocation
failure (kzalloc() or udp_tunnel_nic_alloc()).
This is a normal runtime error and not a kernel bug.
Replace netdev_WARN() with netdev_warn() accordingly. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe/guc: Add devm release action to safely tear down CT
When a buffer object (BO) is allocated with the XE_BO_FLAG_GGTT_INVALIDATE
flag, the driver initiates TLB invalidation requests via the CTB mechanism
while releasing the BO. However a premature release of the CTB BO can lead
to system crashes, as observed in:
Oops: Oops: 0000 [#1] SMP NOPTI
RIP: 0010:h2g_write+0x2f3/0x7c0 [xe]
Call Trace:
guc_ct_send_locked+0x8b/0x670 [xe]
xe_guc_ct_send_locked+0x19/0x60 [xe]
send_tlb_invalidation+0xb4/0x460 [xe]
xe_gt_tlb_invalidation_ggtt+0x15e/0x2e0 [xe]
ggtt_invalidate_gt_tlb.part.0+0x16/0x90 [xe]
ggtt_node_remove+0x110/0x140 [xe]
xe_ggtt_node_remove+0x40/0xa0 [xe]
xe_ggtt_remove_bo+0x87/0x250 [xe]
Introduce a devm-managed release action during xe_guc_ct_init() and
xe_guc_ct_init_post_hwconfig() to ensure proper CTB disablement before
resource deallocation, preventing the use-after-free scenario. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/CPU/AMD: Add missing terminator for zen5_rdseed_microcode
Running x86_match_min_microcode_rev() on a Zen5 CPU trips up KASAN for an out
of bounds access. |
| In the Linux kernel, the following vulnerability has been resolved:
bnxt_en: Fix null pointer dereference in bnxt_bs_trace_check_wrap()
With older FW, we may get the ASYNC_EVENT_CMPL_EVENT_ID_DBG_BUF_PRODUCER
for FW trace data type that has not been initialized. This will result
in a crash in bnxt_bs_trace_type_wrap(). Add a guard to check for a
valid magic_byte pointer before proceeding. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Add bpf_prog_run_data_pointers()
syzbot found that cls_bpf_classify() is able to change
tc_skb_cb(skb)->drop_reason triggering a warning in sk_skb_reason_drop().
WARNING: CPU: 0 PID: 5965 at net/core/skbuff.c:1192 __sk_skb_reason_drop net/core/skbuff.c:1189 [inline]
WARNING: CPU: 0 PID: 5965 at net/core/skbuff.c:1192 sk_skb_reason_drop+0x76/0x170 net/core/skbuff.c:1214
struct tc_skb_cb has been added in commit ec624fe740b4 ("net/sched:
Extend qdisc control block with tc control block"), which added a wrong
interaction with db58ba459202 ("bpf: wire in data and data_end for
cls_act_bpf").
drop_reason was added later.
Add bpf_prog_run_data_pointers() helper to save/restore the net_sched
storage colliding with BPF data_meta/data_end. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: fix lock warning in amdgpu_userq_fence_driver_process
Fix a potential deadlock caused by inconsistent spinlock usage
between interrupt and process contexts in the userq fence driver.
The issue occurs when amdgpu_userq_fence_driver_process() is called
from both:
- Interrupt context: gfx_v11_0_eop_irq() -> amdgpu_userq_fence_driver_process()
- Process context: amdgpu_eviction_fence_suspend_worker() ->
amdgpu_userq_fence_driver_force_completion() -> amdgpu_userq_fence_driver_process()
In interrupt context, the spinlock was acquired without disabling
interrupts, leaving it in {IN-HARDIRQ-W} state. When the same lock
is acquired in process context, the kernel detects inconsistent
locking since the process context acquisition would enable interrupts
while holding a lock previously acquired in interrupt context.
Kernel log shows:
[ 4039.310790] inconsistent {IN-HARDIRQ-W} -> {HARDIRQ-ON-W} usage.
[ 4039.310804] kworker/7:2/409 [HC0[0]:SC0[0]:HE1:SE1] takes:
[ 4039.310818] ffff9284e1bed000 (&fence_drv->fence_list_lock){?...}-{3:3},
[ 4039.310993] {IN-HARDIRQ-W} state was registered at:
[ 4039.311004] lock_acquire+0xc6/0x300
[ 4039.311018] _raw_spin_lock+0x39/0x80
[ 4039.311031] amdgpu_userq_fence_driver_process.part.0+0x30/0x180 [amdgpu]
[ 4039.311146] amdgpu_userq_fence_driver_process+0x17/0x30 [amdgpu]
[ 4039.311257] gfx_v11_0_eop_irq+0x132/0x170 [amdgpu]
Fix by using spin_lock_irqsave()/spin_unlock_irqrestore() to properly
manage interrupt state regardless of calling context.
(cherry picked from commit ded3ad780cf97a04927773c4600823b84f7f3cc2) |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe/guc: Synchronize Dead CT worker with unbind
Cancel and wait for any Dead CT worker to complete before continuing
with device unbinding. Else the worker will end up using resources freed
by the undind operation.
(cherry picked from commit 492671339114e376aaa38626d637a2751cdef263) |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu/atom: Check kcalloc() for WS buffer in amdgpu_atom_execute_table_locked()
kcalloc() may fail. When WS is non-zero and allocation fails, ectx.ws
remains NULL while ectx.ws_size is set, leading to a potential NULL
pointer dereference in atom_get_src_int() when accessing WS entries.
Return -ENOMEM on allocation failure to avoid the NULL dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
media: imon: make send_packet() more robust
syzbot is reporting that imon has three problems which result in
hung tasks due to forever holding device lock [1].
First problem is that when usb_rx_callback_intf0() once got -EPROTO error
after ictx->dev_present_intf0 became true, usb_rx_callback_intf0()
resubmits urb after printk(), and resubmitted urb causes
usb_rx_callback_intf0() to again get -EPROTO error. This results in
printk() flooding (RCU stalls).
Alan Stern commented [2] that
In theory it's okay to resubmit _if_ the driver has a robust
error-recovery scheme (such as giving up after some fixed limit on the
number of errors or after some fixed time has elapsed, perhaps with a
time delay to prevent a flood of errors). Most drivers don't bother to
do this; they simply give up right away. This makes them more
vulnerable to short-term noise interference during USB transfers, but in
reality such interference is quite rare. There's nothing really wrong
with giving up right away.
but imon has a poor error-recovery scheme which just retries forever;
this behavior should be fixed.
Since I'm not sure whether it is safe for imon users to give up upon any
error code, this patch takes care of only union of error codes chosen from
modules in drivers/media/rc/ directory which handle -EPROTO error (i.e.
ir_toy, mceusb and igorplugusb).
Second problem is that when usb_rx_callback_intf0() once got -EPROTO error
before ictx->dev_present_intf0 becomes true, usb_rx_callback_intf0() always
resubmits urb due to commit 8791d63af0cf ("[media] imon: don't wedge
hardware after early callbacks"). Move the ictx->dev_present_intf0 test
introduced by commit 6f6b90c9231a ("[media] imon: don't parse scancodes
until intf configured") to immediately before imon_incoming_packet(), or
the first problem explained above happens without printk() flooding (i.e.
hung task).
Third problem is that when usb_rx_callback_intf0() is not called for some
reason (e.g. flaky hardware; the reproducer for this problem sometimes
prevents usb_rx_callback_intf0() from being called),
wait_for_completion_interruptible() in send_packet() never returns (i.e.
hung task). As a workaround for such situation, change send_packet() to
wait for completion with timeout of 10 seconds. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: account for current allocated stack depth in widen_imprecise_scalars()
The usage pattern for widen_imprecise_scalars() looks as follows:
prev_st = find_prev_entry(env, ...);
queued_st = push_stack(...);
widen_imprecise_scalars(env, prev_st, queued_st);
Where prev_st is an ancestor of the queued_st in the explored states
tree. This ancestor is not guaranteed to have same allocated stack
depth as queued_st. E.g. in the following case:
def main():
for i in 1..2:
foo(i) // same callsite, differnt param
def foo(i):
if i == 1:
use 128 bytes of stack
iterator based loop
Here, for a second 'foo' call prev_st->allocated_stack is 128,
while queued_st->allocated_stack is much smaller.
widen_imprecise_scalars() needs to take this into account and avoid
accessing bpf_verifier_state->frame[*]->stack out of bounds. |