| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
lib/test_kho: check if KHO is enabled
We must check whether KHO is enabled prior to issuing KHO commands,
otherwise KHO internal data structures are not initialized. |
| In the Linux kernel, the following vulnerability has been resolved:
nvme-multipath: fix lockdep WARN due to partition scan work
Blktests test cases nvme/014, 057 and 058 fail occasionally due to a
lockdep WARN. As reported in the Closes tag URL, the WARN indicates that
a deadlock can happen due to the dependency among disk->open_mutex,
kblockd workqueue completion and partition_scan_work completion.
To avoid the lockdep WARN and the potential deadlock, cut the dependency
by running the partition_scan_work not by kblockd workqueue but by
nvme_wq. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/mempool: fix poisoning order>0 pages with HIGHMEM
The kernel test has reported:
BUG: unable to handle page fault for address: fffba000
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
*pde = 03171067 *pte = 00000000
Oops: Oops: 0002 [#1]
CPU: 0 UID: 0 PID: 1 Comm: swapper/0 Tainted: G T 6.18.0-rc2-00031-gec7f31b2a2d3 #1 NONE a1d066dfe789f54bc7645c7989957d2bdee593ca
Tainted: [T]=RANDSTRUCT
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
EIP: memset (arch/x86/include/asm/string_32.h:168 arch/x86/lib/memcpy_32.c:17)
Code: a5 8b 4d f4 83 e1 03 74 02 f3 a4 83 c4 04 5e 5f 5d 2e e9 73 41 01 00 90 90 90 3e 8d 74 26 00 55 89 e5 57 56 89 c6 89 d0 89 f7 <f3> aa 89 f0 5e 5f 5d 2e e9 53 41 01 00 cc cc cc 55 89 e5 53 57 56
EAX: 0000006b EBX: 00000015 ECX: 001fefff EDX: 0000006b
ESI: fffb9000 EDI: fffba000 EBP: c611fbf0 ESP: c611fbe8
DS: 007b ES: 007b FS: 0000 GS: 0000 SS: 0068 EFLAGS: 00010287
CR0: 80050033 CR2: fffba000 CR3: 0316e000 CR4: 00040690
Call Trace:
poison_element (mm/mempool.c:83 mm/mempool.c:102)
mempool_init_node (mm/mempool.c:142 mm/mempool.c:226)
mempool_init_noprof (mm/mempool.c:250 (discriminator 1))
? mempool_alloc_pages (mm/mempool.c:640)
bio_integrity_initfn (block/bio-integrity.c:483 (discriminator 8))
? mempool_alloc_pages (mm/mempool.c:640)
do_one_initcall (init/main.c:1283)
Christoph found out this is due to the poisoning code not dealing
properly with CONFIG_HIGHMEM because only the first page is mapped but
then the whole potentially high-order page is accessed.
We could give up on HIGHMEM here, but it's straightforward to fix this
with a loop that's mapping, poisoning or checking and unmapping
individual pages. |
| In the Linux kernel, the following vulnerability has been resolved:
parisc: Avoid crash due to unaligned access in unwinder
Guenter Roeck reported this kernel crash on his emulated B160L machine:
Starting network: udhcpc: started, v1.36.1
Backtrace:
[<104320d4>] unwind_once+0x1c/0x5c
[<10434a00>] walk_stackframe.isra.0+0x74/0xb8
[<10434a6c>] arch_stack_walk+0x28/0x38
[<104e5efc>] stack_trace_save+0x48/0x5c
[<105d1bdc>] set_track_prepare+0x44/0x6c
[<105d9c80>] ___slab_alloc+0xfc4/0x1024
[<105d9d38>] __slab_alloc.isra.0+0x58/0x90
[<105dc80c>] kmem_cache_alloc_noprof+0x2ac/0x4a0
[<105b8e54>] __anon_vma_prepare+0x60/0x280
[<105a823c>] __vmf_anon_prepare+0x68/0x94
[<105a8b34>] do_wp_page+0x8cc/0xf10
[<105aad88>] handle_mm_fault+0x6c0/0xf08
[<10425568>] do_page_fault+0x110/0x440
[<10427938>] handle_interruption+0x184/0x748
[<11178398>] schedule+0x4c/0x190
BUG: spinlock recursion on CPU#0, ifconfig/2420
lock: terminate_lock.2+0x0/0x1c, .magic: dead4ead, .owner: ifconfig/2420, .owner_cpu: 0
While creating the stack trace, the unwinder uses the stack pointer to guess
the previous frame to read the previous stack pointer from memory. The crash
happens, because the unwinder tries to read from unaligned memory and as such
triggers the unalignment trap handler which then leads to the spinlock
recursion and finally to a deadlock.
Fix it by checking the alignment before accessing the memory. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915: Avoid lock inversion when pinning to GGTT on CHV/BXT+VTD
On completion of i915_vma_pin_ww(), a synchronous variant of
dma_fence_work_commit() is called. When pinning a VMA to GGTT address
space on a Cherry View family processor, or on a Broxton generation SoC
with VTD enabled, i.e., when stop_machine() is then called from
intel_ggtt_bind_vma(), that can potentially lead to lock inversion among
reservation_ww and cpu_hotplug locks.
[86.861179] ======================================================
[86.861193] WARNING: possible circular locking dependency detected
[86.861209] 6.15.0-rc5-CI_DRM_16515-gca0305cadc2d+ #1 Tainted: G U
[86.861226] ------------------------------------------------------
[86.861238] i915_module_loa/1432 is trying to acquire lock:
[86.861252] ffffffff83489090 (cpu_hotplug_lock){++++}-{0:0}, at: stop_machine+0x1c/0x50
[86.861290]
but task is already holding lock:
[86.861303] ffffc90002e0b4c8 (reservation_ww_class_mutex){+.+.}-{3:3}, at: i915_vma_pin.constprop.0+0x39/0x1d0 [i915]
[86.862233]
which lock already depends on the new lock.
[86.862251]
the existing dependency chain (in reverse order) is:
[86.862265]
-> #5 (reservation_ww_class_mutex){+.+.}-{3:3}:
[86.862292] dma_resv_lockdep+0x19a/0x390
[86.862315] do_one_initcall+0x60/0x3f0
[86.862334] kernel_init_freeable+0x3cd/0x680
[86.862353] kernel_init+0x1b/0x200
[86.862369] ret_from_fork+0x47/0x70
[86.862383] ret_from_fork_asm+0x1a/0x30
[86.862399]
-> #4 (reservation_ww_class_acquire){+.+.}-{0:0}:
[86.862425] dma_resv_lockdep+0x178/0x390
[86.862440] do_one_initcall+0x60/0x3f0
[86.862454] kernel_init_freeable+0x3cd/0x680
[86.862470] kernel_init+0x1b/0x200
[86.862482] ret_from_fork+0x47/0x70
[86.862495] ret_from_fork_asm+0x1a/0x30
[86.862509]
-> #3 (&mm->mmap_lock){++++}-{3:3}:
[86.862531] down_read_killable+0x46/0x1e0
[86.862546] lock_mm_and_find_vma+0xa2/0x280
[86.862561] do_user_addr_fault+0x266/0x8e0
[86.862578] exc_page_fault+0x8a/0x2f0
[86.862593] asm_exc_page_fault+0x27/0x30
[86.862607] filldir64+0xeb/0x180
[86.862620] kernfs_fop_readdir+0x118/0x480
[86.862635] iterate_dir+0xcf/0x2b0
[86.862648] __x64_sys_getdents64+0x84/0x140
[86.862661] x64_sys_call+0x1058/0x2660
[86.862675] do_syscall_64+0x91/0xe90
[86.862689] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[86.862703]
-> #2 (&root->kernfs_rwsem){++++}-{3:3}:
[86.862725] down_write+0x3e/0xf0
[86.862738] kernfs_add_one+0x30/0x3c0
[86.862751] kernfs_create_dir_ns+0x53/0xb0
[86.862765] internal_create_group+0x134/0x4c0
[86.862779] sysfs_create_group+0x13/0x20
[86.862792] topology_add_dev+0x1d/0x30
[86.862806] cpuhp_invoke_callback+0x4b5/0x850
[86.862822] cpuhp_issue_call+0xbf/0x1f0
[86.862836] __cpuhp_setup_state_cpuslocked+0x111/0x320
[86.862852] __cpuhp_setup_state+0xb0/0x220
[86.862866] topology_sysfs_init+0x30/0x50
[86.862879] do_one_initcall+0x60/0x3f0
[86.862893] kernel_init_freeable+0x3cd/0x680
[86.862908] kernel_init+0x1b/0x200
[86.862921] ret_from_fork+0x47/0x70
[86.862934] ret_from_fork_asm+0x1a/0x30
[86.862947]
-> #1 (cpuhp_state_mutex){+.+.}-{3:3}:
[86.862969] __mutex_lock+0xaa/0xed0
[86.862982] mutex_lock_nested+0x1b/0x30
[86.862995] __cpuhp_setup_state_cpuslocked+0x67/0x320
[86.863012] __cpuhp_setup_state+0xb0/0x220
[86.863026] page_alloc_init_cpuhp+0x2d/0x60
[86.863041] mm_core_init+0x22/0x2d0
[86.863054] start_kernel+0x576/0xbd0
[86.863068] x86_64_start_reservations+0x18/0x30
[86.863084] x86_64_start_kernel+0xbf/0x110
[86.863098] common_startup_64+0x13e/0x141
[86.863114]
-> #0 (cpu_hotplug_lock){++++}-{0:0}:
[86.863135] __lock_acquire+0x16
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
posix-timers: Plug potential memory leak in do_timer_create()
When posix timer creation is set to allocate a given timer ID and the
access to the user space value faults, the function terminates without
freeing the already allocated posix timer structure.
Move the allocation after the user space access to cure that.
[ tglx: Massaged change log ] |
| In the Linux kernel, the following vulnerability has been resolved:
rust_binder: fix race condition on death_list
Rust Binder contains the following unsafe operation:
// SAFETY: A `NodeDeath` is never inserted into the death list
// of any node other than its owner, so it is either in this
// death list or in no death list.
unsafe { node_inner.death_list.remove(self) };
This operation is unsafe because when touching the prev/next pointers of
a list element, we have to ensure that no other thread is also touching
them in parallel. If the node is present in the list that `remove` is
called on, then that is fine because we have exclusive access to that
list. If the node is not in any list, then it's also ok. But if it's
present in a different list that may be accessed in parallel, then that
may be a data race on the prev/next pointers.
And unfortunately that is exactly what is happening here. In
Node::release, we:
1. Take the lock.
2. Move all items to a local list on the stack.
3. Drop the lock.
4. Iterate the local list on the stack.
Combined with threads using the unsafe remove method on the original
list, this leads to memory corruption of the prev/next pointers. This
leads to crashes like this one:
Unable to handle kernel paging request at virtual address 000bb9841bcac70e
Mem abort info:
ESR = 0x0000000096000044
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x04: level 0 translation fault
Data abort info:
ISV = 0, ISS = 0x00000044, ISS2 = 0x00000000
CM = 0, WnR = 1, TnD = 0, TagAccess = 0
GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
[000bb9841bcac70e] address between user and kernel address ranges
Internal error: Oops: 0000000096000044 [#1] PREEMPT SMP
google-cdd 538c004.gcdd: context saved(CPU:1)
item - log_kevents is disabled
Modules linked in: ... rust_binder
CPU: 1 UID: 0 PID: 2092 Comm: kworker/1:178 Tainted: G S W OE 6.12.52-android16-5-g98debd5df505-4k #1 f94a6367396c5488d635708e43ee0c888d230b0b
Tainted: [S]=CPU_OUT_OF_SPEC, [W]=WARN, [O]=OOT_MODULE, [E]=UNSIGNED_MODULE
Hardware name: MUSTANG PVT 1.0 based on LGA (DT)
Workqueue: events _RNvXs6_NtCsdfZWD8DztAw_6kernel9workqueueINtNtNtB7_4sync3arc3ArcNtNtCs8QPsHWIn21X_16rust_binder_main7process7ProcessEINtB5_15WorkItemPointerKy0_E3runB13_ [rust_binder]
pstate: 23400005 (nzCv daif +PAN -UAO +TCO +DIT -SSBS BTYPE=--)
pc : _RNvXs3_NtCs8QPsHWIn21X_16rust_binder_main7processNtB5_7ProcessNtNtCsdfZWD8DztAw_6kernel9workqueue8WorkItem3run+0x450/0x11f8 [rust_binder]
lr : _RNvXs3_NtCs8QPsHWIn21X_16rust_binder_main7processNtB5_7ProcessNtNtCsdfZWD8DztAw_6kernel9workqueue8WorkItem3run+0x464/0x11f8 [rust_binder]
sp : ffffffc09b433ac0
x29: ffffffc09b433d30 x28: ffffff8821690000 x27: ffffffd40cbaa448
x26: ffffff8821690000 x25: 00000000ffffffff x24: ffffff88d0376578
x23: 0000000000000001 x22: ffffffc09b433c78 x21: ffffff88e8f9bf40
x20: ffffff88e8f9bf40 x19: ffffff882692b000 x18: ffffffd40f10bf00
x17: 00000000c006287d x16: 00000000c006287d x15: 00000000000003b0
x14: 0000000000000100 x13: 000000201cb79ae0 x12: fffffffffffffff0
x11: 0000000000000000 x10: 0000000000000001 x9 : 0000000000000000
x8 : b80bb9841bcac706 x7 : 0000000000000001 x6 : fffffffebee63f30
x5 : 0000000000000000 x4 : 0000000000000001 x3 : 0000000000000000
x2 : 0000000000004c31 x1 : ffffff88216900c0 x0 : ffffff88e8f9bf00
Call trace:
_RNvXs3_NtCs8QPsHWIn21X_16rust_binder_main7processNtB5_7ProcessNtNtCsdfZWD8DztAw_6kernel9workqueue8WorkItem3run+0x450/0x11f8 [rust_binder bbc172b53665bbc815363b22e97e3f7e3fe971fc]
process_scheduled_works+0x1c4/0x45c
worker_thread+0x32c/0x3e8
kthread+0x11c/0x1c8
ret_from_fork+0x10/0x20
Code: 94218d85 b4000155 a94026a8 d10102a0 (f9000509)
---[ end trace 0000000000000000 ]---
Thus, modify Node::release to pop items directly off the original list. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: SDCA: bug fix while parsing mipi-sdca-control-cn-list
"struct sdca_control" declares "values" field as integer array.
But the memory allocated to it is of char array. This causes
crash for sdca_parse_function API. This patch addresses the
issue by allocating correct data size. |
| In the Linux kernel, the following vulnerability has been resolved:
fs: Fix uninitialized 'offp' in statmount_string()
In statmount_string(), most flags assign an output offset pointer (offp)
which is later updated with the string offset. However, the
STATMOUNT_MNT_UIDMAP and STATMOUNT_MNT_GIDMAP cases directly set the
struct fields instead of using offp. This leaves offp uninitialized,
leading to a possible uninitialized dereference when *offp is updated.
Fix it by assigning offp for UIDMAP and GIDMAP as well, keeping the code
path consistent. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: fix PTP cleanup on driver removal in error path
Improve the cleanup on releasing PTP resources in error path.
The error case might happen either at the driver probe and PTP
feature initialization or on PTP restart (errors in reset handling, NVM
update etc). In both cases, calls to PF PTP cleanup (ice_ptp_cleanup_pf
function) and 'ps_lock' mutex deinitialization were missed.
Additionally, ptp clock was not unregistered in the latter case.
Keep PTP state as 'uninitialized' on init to distinguish between error
scenarios and to avoid resource release duplication at driver removal.
The consequence of missing ice_ptp_cleanup_pf call is the following call
trace dumped when ice_adapter object is freed (port list is not empty,
as it is required at this stage):
[ T93022] ------------[ cut here ]------------
[ T93022] WARNING: CPU: 10 PID: 93022 at
ice/ice_adapter.c:67 ice_adapter_put+0xef/0x100 [ice]
...
[ T93022] RIP: 0010:ice_adapter_put+0xef/0x100 [ice]
...
[ T93022] Call Trace:
[ T93022] <TASK>
[ T93022] ? ice_adapter_put+0xef/0x100 [ice
33d2647ad4f6d866d41eefff1806df37c68aef0c]
[ T93022] ? __warn.cold+0xb0/0x10e
[ T93022] ? ice_adapter_put+0xef/0x100 [ice
33d2647ad4f6d866d41eefff1806df37c68aef0c]
[ T93022] ? report_bug+0xd8/0x150
[ T93022] ? handle_bug+0xe9/0x110
[ T93022] ? exc_invalid_op+0x17/0x70
[ T93022] ? asm_exc_invalid_op+0x1a/0x20
[ T93022] ? ice_adapter_put+0xef/0x100 [ice
33d2647ad4f6d866d41eefff1806df37c68aef0c]
[ T93022] pci_device_remove+0x42/0xb0
[ T93022] device_release_driver_internal+0x19f/0x200
[ T93022] driver_detach+0x48/0x90
[ T93022] bus_remove_driver+0x70/0xf0
[ T93022] pci_unregister_driver+0x42/0xb0
[ T93022] ice_module_exit+0x10/0xdb0 [ice
33d2647ad4f6d866d41eefff1806df37c68aef0c]
...
[ T93022] ---[ end trace 0000000000000000 ]---
[ T93022] ice: module unloaded |
| In the Linux kernel, the following vulnerability has been resolved:
timers: Fix NULL function pointer race in timer_shutdown_sync()
There is a race condition between timer_shutdown_sync() and timer
expiration that can lead to hitting a WARN_ON in expire_timers().
The issue occurs when timer_shutdown_sync() clears the timer function
to NULL while the timer is still running on another CPU. The race
scenario looks like this:
CPU0 CPU1
<SOFTIRQ>
lock_timer_base()
expire_timers()
base->running_timer = timer;
unlock_timer_base()
[call_timer_fn enter]
mod_timer()
...
timer_shutdown_sync()
lock_timer_base()
// For now, will not detach the timer but only clear its function to NULL
if (base->running_timer != timer)
ret = detach_if_pending(timer, base, true);
if (shutdown)
timer->function = NULL;
unlock_timer_base()
[call_timer_fn exit]
lock_timer_base()
base->running_timer = NULL;
unlock_timer_base()
...
// Now timer is pending while its function set to NULL.
// next timer trigger
<SOFTIRQ>
expire_timers()
WARN_ON_ONCE(!fn) // hit
...
lock_timer_base()
// Now timer will detach
if (base->running_timer != timer)
ret = detach_if_pending(timer, base, true);
if (shutdown)
timer->function = NULL;
unlock_timer_base()
The problem is that timer_shutdown_sync() clears the timer function
regardless of whether the timer is currently running. This can leave a
pending timer with a NULL function pointer, which triggers the
WARN_ON_ONCE(!fn) check in expire_timers().
Fix this by only clearing the timer function when actually detaching the
timer. If the timer is running, leave the function pointer intact, which is
safe because the timer will be properly detached when it finishes running. |
| In the Linux kernel, the following vulnerability has been resolved:
Input: pegasus-notetaker - fix potential out-of-bounds access
In the pegasus_notetaker driver, the pegasus_probe() function allocates
the URB transfer buffer using the wMaxPacketSize value from
the endpoint descriptor. An attacker can use a malicious USB descriptor
to force the allocation of a very small buffer.
Subsequently, if the device sends an interrupt packet with a specific
pattern (e.g., where the first byte is 0x80 or 0x42),
the pegasus_parse_packet() function parses the packet without checking
the allocated buffer size. This leads to an out-of-bounds memory access. |
| In the Linux kernel, the following vulnerability has been resolved:
net: ethernet: ti: netcp: Standardize knav_dma_open_channel to return NULL on error
Make knav_dma_open_channel consistently return NULL on error instead
of ERR_PTR. Currently the header include/linux/soc/ti/knav_dma.h
returns NULL when the driver is disabled, but the driver
implementation does not even return NULL or ERR_PTR on failure,
causing inconsistency in the users. This results in a crash in
netcp_free_navigator_resources as followed (trimmed):
Unhandled fault: alignment exception (0x221) at 0xfffffff2
[fffffff2] *pgd=80000800207003, *pmd=82ffda003, *pte=00000000
Internal error: : 221 [#1] SMP ARM
Modules linked in:
CPU: 0 UID: 0 PID: 1 Comm: swapper/0 Not tainted 6.17.0-rc7 #1 NONE
Hardware name: Keystone
PC is at knav_dma_close_channel+0x30/0x19c
LR is at netcp_free_navigator_resources+0x2c/0x28c
[... TRIM...]
Call trace:
knav_dma_close_channel from netcp_free_navigator_resources+0x2c/0x28c
netcp_free_navigator_resources from netcp_ndo_open+0x430/0x46c
netcp_ndo_open from __dev_open+0x114/0x29c
__dev_open from __dev_change_flags+0x190/0x208
__dev_change_flags from netif_change_flags+0x1c/0x58
netif_change_flags from dev_change_flags+0x38/0xa0
dev_change_flags from ip_auto_config+0x2c4/0x11f0
ip_auto_config from do_one_initcall+0x58/0x200
do_one_initcall from kernel_init_freeable+0x1cc/0x238
kernel_init_freeable from kernel_init+0x1c/0x12c
kernel_init from ret_from_fork+0x14/0x38
[... TRIM...]
Standardize the error handling by making the function return NULL on
all error conditions. The API is used in just the netcp_core.c so the
impact is limited.
Note, this change, in effect reverts commit 5b6cb43b4d62 ("net:
ethernet: ti: netcp_core: return error while dma channel open issue"),
but provides a less error prone implementation. |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: fix address removal logic in mptcp_pm_nl_rm_addr
Fix inverted WARN_ON_ONCE condition that prevented normal address
removal counter updates. The current code only executes decrement
logic when the counter is already 0 (abnormal state), while
normal removals (counter > 0) are ignored. |
| In the Linux kernel, the following vulnerability has been resolved:
NFS: Fix LTP test failures when timestamps are delegated
The utimes01 and utime06 tests fail when delegated timestamps are
enabled, specifically in subtests that modify the atime and mtime
fields using the 'nobody' user ID.
The problem can be reproduced as follow:
# echo "/media *(rw,no_root_squash,sync)" >> /etc/exports
# export -ra
# mount -o rw,nfsvers=4.2 127.0.0.1:/media /tmpdir
# cd /opt/ltp
# ./runltp -d /tmpdir -s utimes01
# ./runltp -d /tmpdir -s utime06
This issue occurs because nfs_setattr does not verify the inode's
UID against the caller's fsuid when delegated timestamps are
permitted for the inode.
This patch adds the UID check and if it does not match then the
request is sent to the server for permission checking. |
| In the Linux kernel, the following vulnerability has been resolved:
nouveau/firmware: Add missing kfree() of nvkm_falcon_fw::boot
nvkm_falcon_fw::boot is allocated, but no one frees it. This causes a
kmemleak warning.
Make sure this data is deallocated. |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: fix memory leak in smb3_fs_context_parse_param error path
Add proper cleanup of ctx->source and fc->source to the
cifs_parse_mount_err error handler. This ensures that memory allocated
for the source strings is correctly freed on all error paths, matching
the cleanup already performed in the success path by
smb3_cleanup_fs_context_contents().
Pointers are also set to NULL after freeing to prevent potential
double-free issues.
This change fixes a memory leak originally detected by syzbot. The
leak occurred when processing Opt_source mount options if an error
happened after ctx->source and fc->source were successfully
allocated but before the function completed.
The specific leak sequence was:
1. ctx->source = smb3_fs_context_fullpath(ctx, '/') allocates memory
2. fc->source = kstrdup(ctx->source, GFP_KERNEL) allocates more memory
3. A subsequent error jumps to cifs_parse_mount_err
4. The old error handler freed passwords but not the source strings,
causing the memory to leak.
This issue was not addressed by commit e8c73eb7db0a ("cifs: client:
fix memory leak in smb3_fs_context_parse_param"), which only fixed
leaks from repeated fsconfig() calls but not this error path.
Patch updated with minor change suggested by kernel test robot |
| In the Linux kernel, the following vulnerability has been resolved:
drm/radeon: delete radeon_fence_process in is_signaled, no deadlock
Delete the attempt to progress the queue when checking if fence is
signaled. This avoids deadlock.
dma-fence_ops::signaled can be called with the fence lock in unknown
state. For radeon, the fence lock is also the wait queue lock. This can
cause a self deadlock when signaled() tries to make forward progress on
the wait queue. But advancing the queue is unneeded because incorrectly
returning false from signaled() is perfectly acceptable.
(cherry picked from commit 527ba26e50ec2ca2be9c7c82f3ad42998a75d0db) |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: core: Fix a regression triggered by scsi_host_busy()
Commit 995412e23bb2 ("blk-mq: Replace tags->lock with SRCU for tag
iterators") introduced the following regression:
Call trace:
__srcu_read_lock+0x30/0x80 (P)
blk_mq_tagset_busy_iter+0x44/0x300
scsi_host_busy+0x38/0x70
ufshcd_print_host_state+0x34/0x1bc
ufshcd_link_startup.constprop.0+0xe4/0x2e0
ufshcd_init+0x944/0xf80
ufshcd_pltfrm_init+0x504/0x820
ufs_rockchip_probe+0x2c/0x88
platform_probe+0x5c/0xa4
really_probe+0xc0/0x38c
__driver_probe_device+0x7c/0x150
driver_probe_device+0x40/0x120
__driver_attach+0xc8/0x1e0
bus_for_each_dev+0x7c/0xdc
driver_attach+0x24/0x30
bus_add_driver+0x110/0x230
driver_register+0x68/0x130
__platform_driver_register+0x20/0x2c
ufs_rockchip_pltform_init+0x1c/0x28
do_one_initcall+0x60/0x1e0
kernel_init_freeable+0x248/0x2c4
kernel_init+0x20/0x140
ret_from_fork+0x10/0x20
Fix this regression by making scsi_host_busy() check whether the SCSI
host tag set has already been initialized. tag_set->ops is set by
scsi_mq_setup_tags() just before blk_mq_alloc_tag_set() is called. This
fix is based on the assumption that scsi_host_busy() and
scsi_mq_setup_tags() calls are serialized. This is the case in the UFS
driver. |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix incomplete backport in cfids_invalidation_worker()
The previous commit bdb596ceb4b7 ("smb: client: fix potential UAF in
smb2_close_cached_fid()") was an incomplete backport and missed one
kref_put() call in cfids_invalidation_worker() that should have been
converted to close_cached_dir(). |