| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ACPICA: ACPICA: check null return of ACPI_ALLOCATE_ZEROED in acpi_db_display_objects
ACPICA commit 0d5f467d6a0ba852ea3aad68663cbcbd43300fd4
ACPI_ALLOCATE_ZEROED may fails, object_info might be null and will cause
null pointer dereference later. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix assertion of exclop condition when starting balance
Balance as exclusive state is compatible with paused balance and device
add, which makes some things more complicated. The assertion of valid
states when starting from paused balance needs to take into account two
more states, the combinations can be hit when there are several threads
racing to start balance and device add. This won't typically happen when
the commands are started from command line.
Scenario 1: With exclusive_operation state == BTRFS_EXCLOP_NONE.
Concurrently adding multiple devices to the same mount point and
btrfs_exclop_finish executed finishes before assertion in
btrfs_exclop_balance, exclusive_operation will changed to
BTRFS_EXCLOP_NONE state which lead to assertion failed:
fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD,
in fs/btrfs/ioctl.c:456
Call Trace:
<TASK>
btrfs_exclop_balance+0x13c/0x310
? memdup_user+0xab/0xc0
? PTR_ERR+0x17/0x20
btrfs_ioctl_add_dev+0x2ee/0x320
btrfs_ioctl+0x9d5/0x10d0
? btrfs_ioctl_encoded_write+0xb80/0xb80
__x64_sys_ioctl+0x197/0x210
do_syscall_64+0x3c/0xb0
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Scenario 2: With exclusive_operation state == BTRFS_EXCLOP_BALANCE_PAUSED.
Concurrently adding multiple devices to the same mount point and
btrfs_exclop_balance executed finish before the latter thread execute
assertion in btrfs_exclop_balance, exclusive_operation will changed to
BTRFS_EXCLOP_BALANCE_PAUSED state which lead to assertion failed:
fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD ||
fs_info->exclusive_operation == BTRFS_EXCLOP_NONE,
fs/btrfs/ioctl.c:458
Call Trace:
<TASK>
btrfs_exclop_balance+0x240/0x410
? memdup_user+0xab/0xc0
? PTR_ERR+0x17/0x20
btrfs_ioctl_add_dev+0x2ee/0x320
btrfs_ioctl+0x9d5/0x10d0
? btrfs_ioctl_encoded_write+0xb80/0xb80
__x64_sys_ioctl+0x197/0x210
do_syscall_64+0x3c/0xb0
entry_SYSCALL_64_after_hwframe+0x63/0xcd
An example of the failed assertion is below, which shows that the
paused balance is also needed to be checked.
root@syzkaller:/home/xsk# ./repro
Failed to add device /dev/vda, errno 14
Failed to add device /dev/vda, errno 14
Failed to add device /dev/vda, errno 14
Failed to add device /dev/vda, errno 14
Failed to add device /dev/vda, errno 14
Failed to add device /dev/vda, errno 14
Failed to add device /dev/vda, errno 14
Failed to add device /dev/vda, errno 14
Failed to add device /dev/vda, errno 14
[ 416.611428][ T7970] BTRFS info (device loop0): fs_info exclusive_operation: 0
Failed to add device /dev/vda, errno 14
[ 416.613973][ T7971] BTRFS info (device loop0): fs_info exclusive_operation: 3
Failed to add device /dev/vda, errno 14
[ 416.615456][ T7972] BTRFS info (device loop0): fs_info exclusive_operation: 3
Failed to add device /dev/vda, errno 14
[ 416.617528][ T7973] BTRFS info (device loop0): fs_info exclusive_operation: 3
Failed to add device /dev/vda, errno 14
[ 416.618359][ T7974] BTRFS info (device loop0): fs_info exclusive_operation: 3
Failed to add device /dev/vda, errno 14
[ 416.622589][ T7975] BTRFS info (device loop0): fs_info exclusive_operation: 3
Failed to add device /dev/vda, errno 14
[ 416.624034][ T7976] BTRFS info (device loop0): fs_info exclusive_operation: 3
Failed to add device /dev/vda, errno 14
[ 416.626420][ T7977] BTRFS info (device loop0): fs_info exclusive_operation: 3
Failed to add device /dev/vda, errno 14
[ 416.627643][ T7978] BTRFS info (device loop0): fs_info exclusive_operation: 3
Failed to add device /dev/vda, errno 14
[ 416.629006][ T7979] BTRFS info (device loop0): fs_info exclusive_operation: 3
[ 416.630298][ T7980] BTRFS info (device loop0): fs_info exclusive_operation: 3
Fai
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: cfg80211: ocb: don't leave if not joined
If there's no OCB state, don't ask the driver/mac80211 to
leave, since that's just confusing. Since set/clear the
chandef state, that's a simple check. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: mm: fix VA-range sanity check
Both create_mapping_noalloc() and update_mapping_prot() sanity-check
their 'virt' parameter, but the check itself doesn't make much sense.
The condition used today appears to be a historical accident.
The sanity-check condition:
if ((virt >= PAGE_END) && (virt < VMALLOC_START)) {
[ ... warning here ... ]
return;
}
... can only be true for the KASAN shadow region or the module region,
and there's no reason to exclude these specifically for creating and
updateing mappings.
When arm64 support was first upstreamed in commit:
c1cc1552616d0f35 ("arm64: MMU initialisation")
... the condition was:
if (virt < VMALLOC_START) {
[ ... warning here ... ]
return;
}
At the time, VMALLOC_START was the lowest kernel address, and this was
checking whether 'virt' would be translated via TTBR1.
Subsequently in commit:
14c127c957c1c607 ("arm64: mm: Flip kernel VA space")
... the condition was changed to:
if ((virt >= VA_START) && (virt < VMALLOC_START)) {
[ ... warning here ... ]
return;
}
This appear to have been a thinko. The commit moved the linear map to
the bottom of the kernel address space, with VMALLOC_START being at the
halfway point. The old condition would warn for changes to the linear
map below this, and at the time VA_START was the end of the linear map.
Subsequently we cleaned up the naming of VA_START in commit:
77ad4ce69321abbe ("arm64: memory: rename VA_START to PAGE_END")
... keeping the erroneous condition as:
if ((virt >= PAGE_END) && (virt < VMALLOC_START)) {
[ ... warning here ... ]
return;
}
Correct the condition to check against the start of the TTBR1 address
space, which is currently PAGE_OFFSET. This simplifies the logic, and
more clearly matches the "outside kernel range" message in the warning. |
| In the Linux kernel, the following vulnerability has been resolved:
ceph: fix potential use-after-free bug when trimming caps
When trimming the caps and just after the 'session->s_cap_lock' is
released in ceph_iterate_session_caps() the cap maybe removed by
another thread, and when using the stale cap memory in the callbacks
it will trigger use-after-free crash.
We need to check the existence of the cap just after the 'ci->i_ceph_lock'
being acquired. And do nothing if it's already removed. |
| In the Linux kernel, the following vulnerability has been resolved:
hfs: fix missing hfs_bnode_get() in __hfs_bnode_create
Syzbot found a kernel BUG in hfs_bnode_put():
kernel BUG at fs/hfs/bnode.c:466!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 0 PID: 3634 Comm: kworker/u4:5 Not tainted 6.1.0-rc7-syzkaller-00190-g97ee9d1c1696 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022
Workqueue: writeback wb_workfn (flush-7:0)
RIP: 0010:hfs_bnode_put+0x46f/0x480 fs/hfs/bnode.c:466
Code: 8a 80 ff e9 73 fe ff ff 89 d9 80 e1 07 80 c1 03 38 c1 0f 8c a0 fe ff ff 48 89 df e8 db 8a 80 ff e9 93 fe ff ff e8 a1 68 2c ff <0f> 0b e8 9a 68 2c ff 0f 0b 0f 1f 84 00 00 00 00 00 55 41 57 41 56
RSP: 0018:ffffc90003b4f258 EFLAGS: 00010293
RAX: ffffffff825e318f RBX: 0000000000000000 RCX: ffff8880739dd7c0
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
RBP: ffffc90003b4f430 R08: ffffffff825e2d9b R09: ffffed10045157d1
R10: ffffed10045157d1 R11: 1ffff110045157d0 R12: ffff8880228abe80
R13: ffff88807016c000 R14: dffffc0000000000 R15: ffff8880228abe00
FS: 0000000000000000(0000) GS:ffff8880b9800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa6ebe88718 CR3: 000000001e93d000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
hfs_write_inode+0x1bc/0xb40
write_inode fs/fs-writeback.c:1440 [inline]
__writeback_single_inode+0x4d6/0x670 fs/fs-writeback.c:1652
writeback_sb_inodes+0xb3b/0x18f0 fs/fs-writeback.c:1878
__writeback_inodes_wb+0x125/0x420 fs/fs-writeback.c:1949
wb_writeback+0x440/0x7b0 fs/fs-writeback.c:2054
wb_check_start_all fs/fs-writeback.c:2176 [inline]
wb_do_writeback fs/fs-writeback.c:2202 [inline]
wb_workfn+0x827/0xef0 fs/fs-writeback.c:2235
process_one_work+0x877/0xdb0 kernel/workqueue.c:2289
worker_thread+0xb14/0x1330 kernel/workqueue.c:2436
kthread+0x266/0x300 kernel/kthread.c:376
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:306
</TASK>
The BUG_ON() is triggered at here:
/* Dispose of resources used by a node */
void hfs_bnode_put(struct hfs_bnode *node)
{
if (node) {
<skipped>
BUG_ON(!atomic_read(&node->refcnt)); <- we have issue here!!!!
<skipped>
}
}
By tracing the refcnt, I found the node is created by hfs_bmap_alloc()
with refcnt 1. Then the node is used by hfs_btree_write(). There is a
missing of hfs_bnode_get() after find the node. The issue happened in
following path:
<alloc>
hfs_bmap_alloc
hfs_bnode_find
__hfs_bnode_create <- allocate a new node with refcnt 1.
hfs_bnode_put <- decrease the refcnt
<write>
hfs_btree_write
hfs_bnode_find
__hfs_bnode_create
hfs_bnode_findhash <- find the node without refcnt increased.
hfs_bnode_put <- trigger the BUG_ON() since refcnt is 0. |
| In the Linux kernel, the following vulnerability has been resolved:
s390/idle: mark arch_cpu_idle() noinstr
linux-next commit ("cpuidle: tracing: Warn about !rcu_is_watching()")
adds a new warning which hits on s390's arch_cpu_idle() function:
RCU not on for: arch_cpu_idle+0x0/0x28
WARNING: CPU: 2 PID: 0 at include/linux/trace_recursion.h:162 arch_ftrace_ops_list_func+0x24c/0x258
Modules linked in:
CPU: 2 PID: 0 Comm: swapper/2 Not tainted 6.2.0-rc6-next-20230202 #4
Hardware name: IBM 8561 T01 703 (z/VM 7.3.0)
Krnl PSW : 0404d00180000000 00000000002b55c0 (arch_ftrace_ops_list_func+0x250/0x258)
R:0 T:1 IO:0 EX:0 Key:0 M:1 W:0 P:0 AS:3 CC:1 PM:0 RI:0 EA:3
Krnl GPRS: c0000000ffffbfff 0000000080000002 0000000000000026 0000000000000000
0000037ffffe3a28 0000037ffffe3a20 0000000000000000 0000000000000000
0000000000000000 0000000000f4acf6 00000000001044f0 0000037ffffe3cb0
0000000000000000 0000000000000000 00000000002b55bc 0000037ffffe3bb8
Krnl Code: 00000000002b55b0: c02000840051 larl %r2,0000000001335652
00000000002b55b6: c0e5fff512d1 brasl %r14,0000000000157b58
#00000000002b55bc: af000000 mc 0,0
>00000000002b55c0: a7f4ffe7 brc 15,00000000002b558e
00000000002b55c4: 0707 bcr 0,%r7
00000000002b55c6: 0707 bcr 0,%r7
00000000002b55c8: eb6ff0480024 stmg %r6,%r15,72(%r15)
00000000002b55ce: b90400ef lgr %r14,%r15
Call Trace:
[<00000000002b55c0>] arch_ftrace_ops_list_func+0x250/0x258
([<00000000002b55bc>] arch_ftrace_ops_list_func+0x24c/0x258)
[<0000000000f5f0fc>] ftrace_common+0x1c/0x20
[<00000000001044f6>] arch_cpu_idle+0x6/0x28
[<0000000000f4acf6>] default_idle_call+0x76/0x128
[<00000000001cc374>] do_idle+0xf4/0x1b0
[<00000000001cc6ce>] cpu_startup_entry+0x36/0x40
[<0000000000119d00>] smp_start_secondary+0x140/0x150
[<0000000000f5d2ae>] restart_int_handler+0x6e/0x90
Mark arch_cpu_idle() noinstr like all other architectures with
CONFIG_ARCH_WANTS_NO_INSTR (should) have it to fix this. |
| In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix infinite loop in nilfs_mdt_get_block()
If the disk image that nilfs2 mounts is corrupted and a virtual block
address obtained by block lookup for a metadata file is invalid,
nilfs_bmap_lookup_at_level() may return the same internal return code as
-ENOENT, meaning the block does not exist in the metadata file.
This duplication of return codes confuses nilfs_mdt_get_block(), causing
it to read and create a metadata block indefinitely.
In particular, if this happens to the inode metadata file, ifile,
semaphore i_rwsem can be left held, causing task hangs in lock_mount.
Fix this issue by making nilfs_bmap_lookup_at_level() treat virtual block
address translation failures with -ENOENT as metadata corruption instead
of returning the error code. |
| In the Linux kernel, the following vulnerability has been resolved:
devlink: report devlink_port_type_warn source device
devlink_port_type_warn is scheduled for port devlink and warning
when the port type is not set. But from this warning it is not easy
found out which device (driver) has no devlink port set.
[ 3709.975552] Type was not set for devlink port.
[ 3709.975579] WARNING: CPU: 1 PID: 13092 at net/devlink/leftover.c:6775 devlink_port_type_warn+0x11/0x20
[ 3709.993967] Modules linked in: openvswitch nf_conncount nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 nfnetlink bluetooth rpcsec_gss_krb5 auth_rpcgss nfsv4 dns_resolver nfs lockd grace fscache netfs vhost_net vhost vhost_iotlb tap tun bridge stp llc qrtr intel_rapl_msr intel_rapl_common i10nm_edac nfit libnvdimm x86_pkg_temp_thermal mlx5_ib intel_powerclamp coretemp dell_wmi ledtrig_audio sparse_keymap ipmi_ssif kvm_intel ib_uverbs rfkill ib_core video kvm iTCO_wdt acpi_ipmi intel_vsec irqbypass ipmi_si iTCO_vendor_support dcdbas ipmi_devintf mei_me ipmi_msghandler rapl mei intel_cstate isst_if_mmio isst_if_mbox_pci dell_smbios intel_uncore isst_if_common i2c_i801 dell_wmi_descriptor wmi_bmof i2c_smbus intel_pch_thermal pcspkr acpi_power_meter xfs libcrc32c sd_mod sg nvme_tcp mgag200 i2c_algo_bit nvme_fabrics drm_shmem_helper drm_kms_helper nvme syscopyarea ahci sysfillrect sysimgblt nvme_core fb_sys_fops crct10dif_pclmul libahci mlx5_core sfc crc32_pclmul nvme_common drm
[ 3709.994030] crc32c_intel mtd t10_pi mlxfw libata tg3 mdio megaraid_sas psample ghash_clmulni_intel pci_hyperv_intf wmi dm_multipath sunrpc dm_mirror dm_region_hash dm_log dm_mod be2iscsi bnx2i cnic uio cxgb4i cxgb4 tls libcxgbi libcxgb qla4xxx iscsi_boot_sysfs iscsi_tcp libiscsi_tcp libiscsi scsi_transport_iscsi fuse
[ 3710.108431] CPU: 1 PID: 13092 Comm: kworker/1:1 Kdump: loaded Not tainted 5.14.0-319.el9.x86_64 #1
[ 3710.108435] Hardware name: Dell Inc. PowerEdge R750/0PJ80M, BIOS 1.8.2 09/14/2022
[ 3710.108437] Workqueue: events devlink_port_type_warn
[ 3710.108440] RIP: 0010:devlink_port_type_warn+0x11/0x20
[ 3710.108443] Code: 84 76 fe ff ff 48 c7 03 20 0e 1a ad 31 c0 e9 96 fd ff ff 66 0f 1f 44 00 00 0f 1f 44 00 00 48 c7 c7 18 24 4e ad e8 ef 71 62 ff <0f> 0b c3 cc cc cc cc 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 f6 87
[ 3710.108445] RSP: 0018:ff3b6d2e8b3c7e90 EFLAGS: 00010282
[ 3710.108447] RAX: 0000000000000000 RBX: ff366d6580127080 RCX: 0000000000000027
[ 3710.108448] RDX: 0000000000000027 RSI: 00000000ffff86de RDI: ff366d753f41f8c8
[ 3710.108449] RBP: ff366d658ff5a0c0 R08: ff366d753f41f8c0 R09: ff3b6d2e8b3c7e18
[ 3710.108450] R10: 0000000000000001 R11: 0000000000000023 R12: ff366d753f430600
[ 3710.108451] R13: ff366d753f436900 R14: 0000000000000000 R15: ff366d753f436905
[ 3710.108452] FS: 0000000000000000(0000) GS:ff366d753f400000(0000) knlGS:0000000000000000
[ 3710.108453] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 3710.108454] CR2: 00007f1c57bc74e0 CR3: 000000111d26a001 CR4: 0000000000773ee0
[ 3710.108456] PKRU: 55555554
[ 3710.108457] Call Trace:
[ 3710.108458] <TASK>
[ 3710.108459] process_one_work+0x1e2/0x3b0
[ 3710.108466] ? rescuer_thread+0x390/0x390
[ 3710.108468] worker_thread+0x50/0x3a0
[ 3710.108471] ? rescuer_thread+0x390/0x390
[ 3710.108473] kthread+0xdd/0x100
[ 3710.108477] ? kthread_complete_and_exit+0x20/0x20
[ 3710.108479] ret_from_fork+0x1f/0x30
[ 3710.108485] </TASK>
[ 3710.108486] ---[ end trace 1b4b23cd0c65d6a0 ]---
After patch:
[ 402.473064] ice 0000:41:00.0: Type was not set for devlink port.
[ 402.473064] ice 0000:41:00.1: Type was not set for devlink port. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: L2CAP: Fix use-after-free in l2cap_disconnect_{req,rsp}
Similar to commit d0be8347c623 ("Bluetooth: L2CAP: Fix use-after-free
caused by l2cap_chan_put"), just use l2cap_chan_hold_unless_zero to
prevent referencing a channel that is about to be destroyed. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: lib/mpi - avoid null pointer deref in mpi_cmp_ui()
During NVMeTCP Authentication a controller can trigger a kernel
oops by specifying the 8192 bit Diffie Hellman group and passing
a correctly sized, but zeroed Diffie Hellamn value.
mpi_cmp_ui() was detecting this if the second parameter was 0,
but 1 is passed from dh_is_pubkey_valid(). This causes the null
pointer u->d to be dereferenced towards the end of mpi_cmp_ui() |
| In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix use-after-free bug of nilfs_root in nilfs_evict_inode()
During unmount process of nilfs2, nothing holds nilfs_root structure after
nilfs2 detaches its writer in nilfs_detach_log_writer(). However, since
nilfs_evict_inode() uses nilfs_root for some cleanup operations, it may
cause use-after-free read if inodes are left in "garbage_list" and
released by nilfs_dispose_list() at the end of nilfs_detach_log_writer().
Fix this issue by modifying nilfs_evict_inode() to only clear inode
without additional metadata changes that use nilfs_root if the file system
is degraded to read-only or the writer is detached. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: ses: Fix slab-out-of-bounds in ses_enclosure_data_process()
A fix for:
BUG: KASAN: slab-out-of-bounds in ses_enclosure_data_process+0x949/0xe30 [ses]
Read of size 1 at addr ffff88a1b043a451 by task systemd-udevd/3271
Checking after (and before in next loop) addl_desc_ptr[1] is sufficient, we
expect the size to be sanitized before first access to addl_desc_ptr[1].
Make sure we don't walk beyond end of page. |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: fix session state check in reconnect to avoid use-after-free issue
Don't collect exiting session in smb2_reconnect_server(), because it
will be released soon.
Note that the exiting session will stay in server->smb_ses_list until
it complete the cifs_free_ipc() and logoff() and then delete itself
from the list. |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/amd: Improve page fault error reporting
If IOMMU domain for device group is not setup properly then we may hit
IOMMU page fault. Current page fault handler assumes that domain is
always setup and it will hit NULL pointer derefence (see below sample log).
Lets check whether domain is setup or not and log appropriate message.
Sample log:
----------
amdgpu 0000:00:01.0: amdgpu: SE 1, SH per SE 1, CU per SH 8, active_cu_number 6
BUG: kernel NULL pointer dereference, address: 0000000000000058
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 2 PID: 56 Comm: irq/24-AMD-Vi Not tainted 6.2.0-rc2+ #89
Hardware name: xxx
RIP: 0010:report_iommu_fault+0x11/0x90
[...]
Call Trace:
<TASK>
amd_iommu_int_thread+0x60c/0x760
? __pfx_irq_thread_fn+0x10/0x10
irq_thread_fn+0x1f/0x60
irq_thread+0xea/0x1a0
? preempt_count_add+0x6a/0xa0
? __pfx_irq_thread_dtor+0x10/0x10
? __pfx_irq_thread+0x10/0x10
kthread+0xe9/0x110
? __pfx_kthread+0x10/0x10
ret_from_fork+0x2c/0x50
</TASK>
[joro: Edit commit message] |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: hda/ca0132: fixup buffer overrun at tuning_ctl_set()
tuning_ctl_set() might have buffer overrun at (X) if it didn't break
from loop by matching (A).
static int tuning_ctl_set(...)
{
for (i = 0; i < TUNING_CTLS_COUNT; i++)
(A) if (nid == ca0132_tuning_ctls[i].nid)
break;
snd_hda_power_up(...);
(X) dspio_set_param(..., ca0132_tuning_ctls[i].mid, ...);
snd_hda_power_down(...); ^
return 1;
}
We will get below error by cppcheck
sound/pci/hda/patch_ca0132.c:4229:2: note: After for loop, i has value 12
for (i = 0; i < TUNING_CTLS_COUNT; i++)
^
sound/pci/hda/patch_ca0132.c:4234:43: note: Array index out of bounds
dspio_set_param(codec, ca0132_tuning_ctls[i].mid, 0x20,
^
This patch cares non match case. |
| In the Linux kernel, the following vulnerability has been resolved:
dm flakey: fix a crash with invalid table line
This command will crash with NULL pointer dereference:
dmsetup create flakey --table \
"0 `blockdev --getsize /dev/ram0` flakey /dev/ram0 0 0 1 2 corrupt_bio_byte 512"
Fix the crash by checking if arg_name is non-NULL before comparing it. |
| In the Linux kernel, the following vulnerability has been resolved:
FS: JFS: Check for read-only mounted filesystem in txBegin
This patch adds a check for read-only mounted filesystem
in txBegin before starting a transaction potentially saving
from NULL pointer deref. |
| In the Linux kernel, the following vulnerability has been resolved:
dm cache: free background tracker's queued work in btracker_destroy
Otherwise the kernel can BUG with:
[ 2245.426978] =============================================================================
[ 2245.435155] BUG bt_work (Tainted: G B W ): Objects remaining in bt_work on __kmem_cache_shutdown()
[ 2245.445233] -----------------------------------------------------------------------------
[ 2245.445233]
[ 2245.454879] Slab 0x00000000b0ce2b30 objects=64 used=2 fp=0x000000000a3c6a4e flags=0x17ffffc0000200(slab|node=0|zone=2|lastcpupid=0x1fffff)
[ 2245.467300] CPU: 7 PID: 10805 Comm: lvm Kdump: loaded Tainted: G B W 6.0.0-rc2 #19
[ 2245.476078] Hardware name: Dell Inc. PowerEdge R7525/0590KW, BIOS 2.5.6 10/06/2021
[ 2245.483646] Call Trace:
[ 2245.486100] <TASK>
[ 2245.488206] dump_stack_lvl+0x34/0x48
[ 2245.491878] slab_err+0x95/0xcd
[ 2245.495028] __kmem_cache_shutdown.cold+0x31/0x136
[ 2245.499821] kmem_cache_destroy+0x49/0x130
[ 2245.503928] btracker_destroy+0x12/0x20 [dm_cache]
[ 2245.508728] smq_destroy+0x15/0x60 [dm_cache_smq]
[ 2245.513435] dm_cache_policy_destroy+0x12/0x20 [dm_cache]
[ 2245.518834] destroy+0xc0/0x110 [dm_cache]
[ 2245.522933] dm_table_destroy+0x5c/0x120 [dm_mod]
[ 2245.527649] __dm_destroy+0x10e/0x1c0 [dm_mod]
[ 2245.532102] dev_remove+0x117/0x190 [dm_mod]
[ 2245.536384] ctl_ioctl+0x1a2/0x290 [dm_mod]
[ 2245.540579] dm_ctl_ioctl+0xa/0x20 [dm_mod]
[ 2245.544773] __x64_sys_ioctl+0x8a/0xc0
[ 2245.548524] do_syscall_64+0x5c/0x90
[ 2245.552104] ? syscall_exit_to_user_mode+0x12/0x30
[ 2245.556897] ? do_syscall_64+0x69/0x90
[ 2245.560648] ? do_syscall_64+0x69/0x90
[ 2245.564394] entry_SYSCALL_64_after_hwframe+0x63/0xcd
[ 2245.569447] RIP: 0033:0x7fe52583ec6b
...
[ 2245.646771] ------------[ cut here ]------------
[ 2245.651395] kmem_cache_destroy bt_work: Slab cache still has objects when called from btracker_destroy+0x12/0x20 [dm_cache]
[ 2245.651408] WARNING: CPU: 7 PID: 10805 at mm/slab_common.c:478 kmem_cache_destroy+0x128/0x130
Found using: lvm2-testsuite --only "cache-single-split.sh"
Ben bisected and found that commit 0495e337b703 ("mm/slab_common:
Deleting kobject in kmem_cache_destroy() without holding
slab_mutex/cpu_hotplug_lock") first exposed dm-cache's incomplete
cleanup of its background tracker work objects. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: usbtmc: Fix direction for 0-length ioctl control messages
The syzbot fuzzer found a problem in the usbtmc driver: When a user
submits an ioctl for a 0-length control transfer, the driver does not
check that the direction is set to OUT:
------------[ cut here ]------------
usb 3-1: BOGUS control dir, pipe 80000b80 doesn't match bRequestType fd
WARNING: CPU: 0 PID: 5100 at drivers/usb/core/urb.c:411 usb_submit_urb+0x14a7/0x1880 drivers/usb/core/urb.c:411
Modules linked in:
CPU: 0 PID: 5100 Comm: syz-executor428 Not tainted 6.3.0-syzkaller-12049-g58390c8ce1bd #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 04/14/2023
RIP: 0010:usb_submit_urb+0x14a7/0x1880 drivers/usb/core/urb.c:411
Code: 7c 24 40 e8 1b 13 5c fb 48 8b 7c 24 40 e8 21 1d f0 fe 45 89 e8 44 89 f1 4c 89 e2 48 89 c6 48 c7 c7 e0 b5 fc 8a e8 19 c8 23 fb <0f> 0b e9 9f ee ff ff e8 ed 12 5c fb 0f b6 1d 12 8a 3c 08 31 ff 41
RSP: 0018:ffffc90003d2fb00 EFLAGS: 00010282
RAX: 0000000000000000 RBX: ffff8880789e9058 RCX: 0000000000000000
RDX: ffff888029593b80 RSI: ffffffff814c1447 RDI: 0000000000000001
RBP: ffff88801ea742f8 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000001 R12: ffff88802915e528
R13: 00000000000000fd R14: 0000000080000b80 R15: ffff8880222b3100
FS: 0000555556ca63c0(0000) GS:ffff8880b9800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f9ef4d18150 CR3: 0000000073e5b000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
usb_start_wait_urb+0x101/0x4b0 drivers/usb/core/message.c:58
usb_internal_control_msg drivers/usb/core/message.c:102 [inline]
usb_control_msg+0x320/0x4a0 drivers/usb/core/message.c:153
usbtmc_ioctl_request drivers/usb/class/usbtmc.c:1954 [inline]
usbtmc_ioctl+0x1b3d/0x2840 drivers/usb/class/usbtmc.c:2097
To fix this, we must override the direction in the bRequestType field
of the control request structure when the length is 0. |