| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
block: ublk: make sure that block size is set correctly
block size is one very key setting for block layer, and bad block size
could panic kernel easily.
Make sure that block size is set correctly.
Meantime if ublk_validate_params() fails, clear ub->params so that disk
is prevented from being added. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix i_disksize exceeding i_size problem in paritally written case
It is possible for i_disksize can exceed i_size, triggering a warning.
generic_perform_write
copied = iov_iter_copy_from_user_atomic(len) // copied < len
ext4_da_write_end
| ext4_update_i_disksize
| new_i_size = pos + copied;
| WRITE_ONCE(EXT4_I(inode)->i_disksize, newsize) // update i_disksize
| generic_write_end
| copied = block_write_end(copied, len) // copied = 0
| if (unlikely(copied < len))
| if (!PageUptodate(page))
| copied = 0;
| if (pos + copied > inode->i_size) // return false
if (unlikely(copied == 0))
goto again;
if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
status = -EFAULT;
break;
}
We get i_disksize greater than i_size here, which could trigger WARNING
check 'i_size_read(inode) < EXT4_I(inode)->i_disksize' while doing dio:
ext4_dio_write_iter
iomap_dio_rw
__iomap_dio_rw // return err, length is not aligned to 512
ext4_handle_inode_extension
WARN_ON_ONCE(i_size_read(inode) < EXT4_I(inode)->i_disksize) // Oops
WARNING: CPU: 2 PID: 2609 at fs/ext4/file.c:319
CPU: 2 PID: 2609 Comm: aa Not tainted 6.3.0-rc2
RIP: 0010:ext4_file_write_iter+0xbc7
Call Trace:
vfs_write+0x3b1
ksys_write+0x77
do_syscall_64+0x39
Fix it by updating 'copied' value before updating i_disksize just like
ext4_write_inline_data_end() does.
A reproducer can be found in the buganizer link below. |
| In the Linux kernel, the following vulnerability has been resolved:
ubi: Fix unreferenced object reported by kmemleak in ubi_resize_volume()
There is a memory leaks problem reported by kmemleak:
unreferenced object 0xffff888102007a00 (size 128):
comm "ubirsvol", pid 32090, jiffies 4298464136 (age 2361.231s)
hex dump (first 32 bytes):
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ................
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ................
backtrace:
[<ffffffff8176cecd>] __kmalloc+0x4d/0x150
[<ffffffffa02a9a36>] ubi_eba_create_table+0x76/0x170 [ubi]
[<ffffffffa029764e>] ubi_resize_volume+0x1be/0xbc0 [ubi]
[<ffffffffa02a3321>] ubi_cdev_ioctl+0x701/0x1850 [ubi]
[<ffffffff81975d2d>] __x64_sys_ioctl+0x11d/0x170
[<ffffffff83c142a5>] do_syscall_64+0x35/0x80
[<ffffffff83e0006a>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
This is due to a mismatch between create and destroy interfaces, and
in detail that "new_eba_tbl" created by ubi_eba_create_table() but
destroyed by kfree(), while will causing "new_eba_tbl->entries" not
freed.
Fix it by replacing kfree(new_eba_tbl) with
ubi_eba_destroy_table(new_eba_tbl) |
| In the Linux kernel, the following vulnerability has been resolved:
net: ena: fix shift-out-of-bounds in exponential backoff
The ENA adapters on our instances occasionally reset. Once recently
logged a UBSAN failure to console in the process:
UBSAN: shift-out-of-bounds in build/linux/drivers/net/ethernet/amazon/ena/ena_com.c:540:13
shift exponent 32 is too large for 32-bit type 'unsigned int'
CPU: 28 PID: 70012 Comm: kworker/u72:2 Kdump: loaded not tainted 5.15.117
Hardware name: Amazon EC2 c5d.9xlarge/, BIOS 1.0 10/16/2017
Workqueue: ena ena_fw_reset_device [ena]
Call Trace:
<TASK>
dump_stack_lvl+0x4a/0x63
dump_stack+0x10/0x16
ubsan_epilogue+0x9/0x36
__ubsan_handle_shift_out_of_bounds.cold+0x61/0x10e
? __const_udelay+0x43/0x50
ena_delay_exponential_backoff_us.cold+0x16/0x1e [ena]
wait_for_reset_state+0x54/0xa0 [ena]
ena_com_dev_reset+0xc8/0x110 [ena]
ena_down+0x3fe/0x480 [ena]
ena_destroy_device+0xeb/0xf0 [ena]
ena_fw_reset_device+0x30/0x50 [ena]
process_one_work+0x22b/0x3d0
worker_thread+0x4d/0x3f0
? process_one_work+0x3d0/0x3d0
kthread+0x12a/0x150
? set_kthread_struct+0x50/0x50
ret_from_fork+0x22/0x30
</TASK>
Apparently, the reset delays are getting so large they can trigger a
UBSAN panic.
Looking at the code, the current timeout is capped at 5000us. Using a
base value of 100us, the current code will overflow after (1<<29). Even
at values before 32, this function wraps around, perhaps
unintentionally.
Cap the value of the exponent used for this backoff at (1<<16) which is
larger than currently necessary, but large enough to support bigger
values in the future. |
| In the Linux kernel, the following vulnerability has been resolved:
Drivers: vmbus: Check for channel allocation before looking up relids
relid2channel() assumes vmbus channel array to be allocated when called.
However, in cases such as kdump/kexec, not all relids will be reset by the host.
When the second kernel boots and if the guest receives a vmbus interrupt during
vmbus driver initialization before vmbus_connect() is called, before it finishes,
or if it fails, the vmbus interrupt service routine is called which in turn calls
relid2channel() and can cause a null pointer dereference.
Print a warning and error out in relid2channel() for a channel id that's invalid
in the second kernel. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: mediatek: mt8183: Add back SSPM related clocks
This reverts commit 860690a93ef23b567f781c1b631623e27190f101.
On the MT8183, the SSPM related clocks were removed claiming a lack of
usage. This however causes some issues when the driver was converted to
the new simple-probe mechanism. This mechanism allocates enough space
for all the clocks defined in the clock driver, not the highest index
in the DT binding. This leads to out-of-bound writes if their are holes
in the DT binding or the driver (due to deprecated or unimplemented
clocks). These errors can go unnoticed and cause memory corruption,
leading to crashes in unrelated areas, or nothing at all. KASAN will
detect them.
Add the SSPM related clocks back to the MT8183 clock driver to fully
implement the DT binding. The SSPM clocks are for the power management
co-processor, and should never be turned off. They are marked as such. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: hda: fix a possible null-pointer dereference due to data race in snd_hdac_regmap_sync()
The variable codec->regmap is often protected by the lock
codec->regmap_lock when is accessed. However, it is accessed without
holding the lock when is accessed in snd_hdac_regmap_sync():
if (codec->regmap)
In my opinion, this may be a harmful race, because if codec->regmap is
set to NULL right after the condition is checked, a null-pointer
dereference can occur in the called function regcache_sync():
map->lock(map->lock_arg); --> Line 360 in drivers/base/regmap/regcache.c
To fix this possible null-pointer dereference caused by data race, the
mutex_lock coverage is extended to protect the if statement as well as the
function call to regcache_sync().
[ Note: the lack of the regmap_lock itself is harmless for the current
codec driver implementations, as snd_hdac_regmap_sync() is only for
PM runtime resume that is prohibited during the codec probe.
But the change makes the whole code more consistent, so it's merged
as is -- tiwai ] |
| In the Linux kernel, the following vulnerability has been resolved:
ubifs: Free memory for tmpfile name
When opening a ubifs tmpfile on an encrypted directory, function
fscrypt_setup_filename allocates memory for the name that is to be
stored in the directory entry, but after the name has been copied to the
directory entry inode, the memory is not freed.
When running kmemleak on it we see that it is registered as a leak. The
report below is triggered by a simple program 'tmpfile' just opening a
tmpfile:
unreferenced object 0xffff88810178f380 (size 32):
comm "tmpfile", pid 509, jiffies 4294934744 (age 1524.742s)
backtrace:
__kmem_cache_alloc_node
__kmalloc
fscrypt_setup_filename
ubifs_tmpfile
vfs_tmpfile
path_openat
Free this memory after it has been copied to the inode. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: iwl3945: Add missing check for create_singlethread_workqueue
Add the check for the return value of the create_singlethread_workqueue
in order to avoid NULL pointer dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
ubifs: Fix memory leak in ubifs_sysfs_init()
When insmod ubifs.ko, a kmemleak reported as below:
unreferenced object 0xffff88817fb1a780 (size 8):
comm "insmod", pid 25265, jiffies 4295239702 (age 100.130s)
hex dump (first 8 bytes):
75 62 69 66 73 00 ff ff ubifs...
backtrace:
[<ffffffff81b3fc4c>] slab_post_alloc_hook+0x9c/0x3c0
[<ffffffff81b44bf3>] __kmalloc_track_caller+0x183/0x410
[<ffffffff8198d3da>] kstrdup+0x3a/0x80
[<ffffffff8198d486>] kstrdup_const+0x66/0x80
[<ffffffff83989325>] kvasprintf_const+0x155/0x190
[<ffffffff83bf55bb>] kobject_set_name_vargs+0x5b/0x150
[<ffffffff83bf576b>] kobject_set_name+0xbb/0xf0
[<ffffffff8100204c>] do_one_initcall+0x14c/0x5a0
[<ffffffff8157e380>] do_init_module+0x1f0/0x660
[<ffffffff815857be>] load_module+0x6d7e/0x7590
[<ffffffff8158644f>] __do_sys_finit_module+0x19f/0x230
[<ffffffff815866b3>] __x64_sys_finit_module+0x73/0xb0
[<ffffffff88c98e85>] do_syscall_64+0x35/0x80
[<ffffffff88e00087>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
When kset_register() failed, we should call kset_put to cleanup it. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: cdns3: Put the cdns set active part outside the spin lock
The device may be scheduled during the resume process,
so this cannot appear in atomic operations. Since
pm_runtime_set_active will resume suppliers, put set
active outside the spin lock, which is only used to
protect the struct cdns data structure, otherwise the
kernel will report the following warning:
BUG: sleeping function called from invalid context at drivers/base/power/runtime.c:1163
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 651, name: sh
preempt_count: 1, expected: 0
RCU nest depth: 0, expected: 0
CPU: 0 PID: 651 Comm: sh Tainted: G WC 6.1.20 #1
Hardware name: Freescale i.MX8QM MEK (DT)
Call trace:
dump_backtrace.part.0+0xe0/0xf0
show_stack+0x18/0x30
dump_stack_lvl+0x64/0x80
dump_stack+0x1c/0x38
__might_resched+0x1fc/0x240
__might_sleep+0x68/0xc0
__pm_runtime_resume+0x9c/0xe0
rpm_get_suppliers+0x68/0x1b0
__pm_runtime_set_status+0x298/0x560
cdns_resume+0xb0/0x1c0
cdns3_controller_resume.isra.0+0x1e0/0x250
cdns3_plat_resume+0x28/0x40 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/client: Fix memory leak in drm_client_modeset_probe
When a new mode is set to modeset->mode, the previous mode should be freed.
This fixes the following kmemleak report:
drm_mode_duplicate+0x45/0x220 [drm]
drm_client_modeset_probe+0x944/0xf50 [drm]
__drm_fb_helper_initial_config_and_unlock+0xb4/0x2c0 [drm_kms_helper]
drm_fbdev_client_hotplug+0x2bc/0x4d0 [drm_kms_helper]
drm_client_register+0x169/0x240 [drm]
ast_pci_probe+0x142/0x190 [ast]
local_pci_probe+0xdc/0x180
work_for_cpu_fn+0x4e/0xa0
process_one_work+0x8b7/0x1540
worker_thread+0x70a/0xed0
kthread+0x29f/0x340
ret_from_fork+0x1f/0x30 |
| In the Linux kernel, the following vulnerability has been resolved:
media: bdisp: Add missing check for create_workqueue
Add the check for the return value of the create_workqueue
in order to avoid NULL pointer dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
samples/bpf: Fix fout leak in hbm's run_bpf_prog
Fix fout being fopen'ed but then not subsequently fclose'd. In the affected
branch, fout is otherwise going out of scope. |
| In the Linux kernel, the following vulnerability has been resolved:
rcu/rcuscale: Stop kfree_scale_thread thread(s) after unloading rcuscale
Running the 'kfree_rcu_test' test case [1] results in a splat [2].
The root cause is the kfree_scale_thread thread(s) continue running
after unloading the rcuscale module. This commit fixes that isue by
invoking kfree_scale_cleanup() from rcu_scale_cleanup() when removing
the rcuscale module.
[1] modprobe rcuscale kfree_rcu_test=1
// After some time
rmmod rcuscale
rmmod torture
[2] BUG: unable to handle page fault for address: ffffffffc0601a87
#PF: supervisor instruction fetch in kernel mode
#PF: error_code(0x0010) - not-present page
PGD 11de4f067 P4D 11de4f067 PUD 11de51067 PMD 112f4d067 PTE 0
Oops: 0010 [#1] PREEMPT SMP NOPTI
CPU: 1 PID: 1798 Comm: kfree_scale_thr Not tainted 6.3.0-rc1-rcu+ #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 0.0.0 02/06/2015
RIP: 0010:0xffffffffc0601a87
Code: Unable to access opcode bytes at 0xffffffffc0601a5d.
RSP: 0018:ffffb25bc2e57e18 EFLAGS: 00010297
RAX: 0000000000000000 RBX: ffffffffc061f0b6 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffffffff962fd0de RDI: ffffffff962fd0de
RBP: ffffb25bc2e57ea8 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000001 R12: 0000000000000000
R13: 0000000000000000 R14: 000000000000000a R15: 00000000001c1dbe
FS: 0000000000000000(0000) GS:ffff921fa2200000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffffffc0601a5d CR3: 000000011de4c006 CR4: 0000000000370ee0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
? kvfree_call_rcu+0xf0/0x3a0
? kthread+0xf3/0x120
? kthread_complete_and_exit+0x20/0x20
? ret_from_fork+0x1f/0x30
</TASK>
Modules linked in: rfkill sunrpc ... [last unloaded: torture]
CR2: ffffffffc0601a87
---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Fix lockdep assertion on sync reset unload event
Fix lockdep assertion triggered during sync reset unload event. When the
sync reset flow is initiated using the devlink reload fw_activate
option, the PF already holds the devlink lock while handling unload
event. In this case, delegate sync reset unload event handling back to
the devlink callback process to avoid double-locking and resolve the
lockdep warning.
Kernel log:
WARNING: CPU: 9 PID: 1578 at devl_assert_locked+0x31/0x40
[...]
Call Trace:
<TASK>
mlx5_unload_one_devl_locked+0x2c/0xc0 [mlx5_core]
mlx5_sync_reset_unload_event+0xaf/0x2f0 [mlx5_core]
process_one_work+0x222/0x640
worker_thread+0x199/0x350
kthread+0x10b/0x230
? __pfx_worker_thread+0x10/0x10
? __pfx_kthread+0x10/0x10
ret_from_fork+0x8e/0x100
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
mISDN: hfcpci: Fix warning when deleting uninitialized timer
With CONFIG_DEBUG_OBJECTS_TIMERS unloading hfcpci module leads
to the following splat:
[ 250.215892] ODEBUG: assert_init not available (active state 0) object: ffffffffc01a3dc0 object type: timer_list hint: 0x0
[ 250.217520] WARNING: CPU: 0 PID: 233 at lib/debugobjects.c:612 debug_print_object+0x1b6/0x2c0
[ 250.218775] Modules linked in: hfcpci(-) mISDN_core
[ 250.219537] CPU: 0 UID: 0 PID: 233 Comm: rmmod Not tainted 6.17.0-rc2-g6f713187ac98 #2 PREEMPT(voluntary)
[ 250.220940] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 250.222377] RIP: 0010:debug_print_object+0x1b6/0x2c0
[ 250.223131] Code: fc ff df 48 89 fa 48 c1 ea 03 80 3c 02 00 75 4f 41 56 48 8b 14 dd a0 4e 01 9f 48 89 ee 48 c7 c7 20 46 01 9f e8 cb 84d
[ 250.225805] RSP: 0018:ffff888015ea7c08 EFLAGS: 00010286
[ 250.226608] RAX: 0000000000000000 RBX: 0000000000000005 RCX: ffffffff9be93a95
[ 250.227708] RDX: 1ffff1100d945138 RSI: 0000000000000008 RDI: ffff88806ca289c0
[ 250.228993] RBP: ffffffff9f014a00 R08: 0000000000000001 R09: ffffed1002bd4f39
[ 250.230043] R10: ffff888015ea79cf R11: 0000000000000001 R12: 0000000000000001
[ 250.231185] R13: ffffffff9eea0520 R14: 0000000000000000 R15: ffff888015ea7cc8
[ 250.232454] FS: 00007f3208f01540(0000) GS:ffff8880caf5a000(0000) knlGS:0000000000000000
[ 250.233851] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 250.234856] CR2: 00007f32090a7421 CR3: 0000000004d63000 CR4: 00000000000006f0
[ 250.236117] Call Trace:
[ 250.236599] <TASK>
[ 250.236967] ? trace_irq_enable.constprop.0+0xd4/0x130
[ 250.237920] debug_object_assert_init+0x1f6/0x310
[ 250.238762] ? __pfx_debug_object_assert_init+0x10/0x10
[ 250.239658] ? __lock_acquire+0xdea/0x1c70
[ 250.240369] __try_to_del_timer_sync+0x69/0x140
[ 250.241172] ? __pfx___try_to_del_timer_sync+0x10/0x10
[ 250.242058] ? __timer_delete_sync+0xc6/0x120
[ 250.242842] ? lock_acquire+0x30/0x80
[ 250.243474] ? __timer_delete_sync+0xc6/0x120
[ 250.244262] __timer_delete_sync+0x98/0x120
[ 250.245015] HFC_cleanup+0x10/0x20 [hfcpci]
[ 250.245704] __do_sys_delete_module+0x348/0x510
[ 250.246461] ? __pfx___do_sys_delete_module+0x10/0x10
[ 250.247338] do_syscall_64+0xc1/0x360
[ 250.247924] entry_SYSCALL_64_after_hwframe+0x77/0x7f
Fix this by initializing hfc_tl timer with DEFINE_TIMER macro.
Also, use mod_timer instead of manual timeout update. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: check S1G action frame size
Before checking the action code, check that it even
exists in the frame. |
| In the Linux kernel, the following vulnerability has been resolved:
driver: soc: xilinx: fix memory leak in xlnx_add_cb_for_notify_event()
The kfree() should be called when memory fails to be allocated for
cb_data in xlnx_add_cb_for_notify_event(), otherwise there will be
a memory leak, so add kfree() to fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to avoid potential memory corruption in __update_iostat_latency()
Add iotype sanity check to avoid potential memory corruption.
This is to fix the compile error below:
fs/f2fs/iostat.c:231 __update_iostat_latency() error: buffer overflow
'io_lat->peak_lat[type]' 3 <= 3
vim +228 fs/f2fs/iostat.c
211 static inline void __update_iostat_latency(struct bio_iostat_ctx
*iostat_ctx,
212 enum iostat_lat_type type)
213 {
214 unsigned long ts_diff;
215 unsigned int page_type = iostat_ctx->type;
216 struct f2fs_sb_info *sbi = iostat_ctx->sbi;
217 struct iostat_lat_info *io_lat = sbi->iostat_io_lat;
218 unsigned long flags;
219
220 if (!sbi->iostat_enable)
221 return;
222
223 ts_diff = jiffies - iostat_ctx->submit_ts;
224 if (page_type >= META_FLUSH)
^^^^^^^^^^
225 page_type = META;
226
227 spin_lock_irqsave(&sbi->iostat_lat_lock, flags);
@228 io_lat->sum_lat[type][page_type] += ts_diff;
^^^^^^^^^
Mixup between META_FLUSH and NR_PAGE_TYPE leads to memory corruption. |