Filtered by vendor Linux Subscriptions
Total 12933 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2022-49067 1 Linux 1 Linux Kernel 2025-07-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: powerpc: Fix virt_addr_valid() for 64-bit Book3E & 32-bit mpe: On 64-bit Book3E vmalloc space starts at 0x8000000000000000. Because of the way __pa() works we have: __pa(0x8000000000000000) == 0, and therefore virt_to_pfn(0x8000000000000000) == 0, and therefore virt_addr_valid(0x8000000000000000) == true Which is wrong, virt_addr_valid() should be false for vmalloc space. In fact all vmalloc addresses that alias with a valid PFN will return true from virt_addr_valid(). That can cause bugs with hardened usercopy as described below by Kefeng Wang: When running ethtool eth0 on 64-bit Book3E, a BUG occurred: usercopy: Kernel memory exposure attempt detected from SLUB object not in SLUB page?! (offset 0, size 1048)! kernel BUG at mm/usercopy.c:99 ... usercopy_abort+0x64/0xa0 (unreliable) __check_heap_object+0x168/0x190 __check_object_size+0x1a0/0x200 dev_ethtool+0x2494/0x2b20 dev_ioctl+0x5d0/0x770 sock_do_ioctl+0xf0/0x1d0 sock_ioctl+0x3ec/0x5a0 __se_sys_ioctl+0xf0/0x160 system_call_exception+0xfc/0x1f0 system_call_common+0xf8/0x200 The code shows below, data = vzalloc(array_size(gstrings.len, ETH_GSTRING_LEN)); copy_to_user(useraddr, data, gstrings.len * ETH_GSTRING_LEN)) The data is alloced by vmalloc(), virt_addr_valid(ptr) will return true on 64-bit Book3E, which leads to the panic. As commit 4dd7554a6456 ("powerpc/64: Add VIRTUAL_BUG_ON checks for __va and __pa addresses") does, make sure the virt addr above PAGE_OFFSET in the virt_addr_valid() for 64-bit, also add upper limit check to make sure the virt is below high_memory. Meanwhile, for 32-bit PAGE_OFFSET is the virtual address of the start of lowmem, high_memory is the upper low virtual address, the check is suitable for 32-bit, this will fix the issue mentioned in commit 602946ec2f90 ("powerpc: Set max_mapnr correctly") too. On 32-bit there is a similar problem with high memory, that was fixed in commit 602946ec2f90 ("powerpc: Set max_mapnr correctly"), but that commit breaks highmem and needs to be reverted. We can't easily fix __pa(), we have code that relies on its current behaviour. So for now add extra checks to virt_addr_valid(). For 64-bit Book3S the extra checks are not necessary, the combination of virt_to_pfn() and pfn_valid() should yield the correct result, but they are harmless. [mpe: Add additional change log detail]
CVE-2022-48794 1 Linux 1 Linux Kernel 2025-07-12 6.1 Medium
In the Linux kernel, the following vulnerability has been resolved: net: ieee802154: at86rf230: Stop leaking skb's Upon error the ieee802154_xmit_complete() helper is not called. Only ieee802154_wake_queue() is called manually. In the Tx case we then leak the skb structure. Free the skb structure upon error before returning when appropriate. As the 'is_tx = 0' cannot be moved in the complete handler because of a possible race between the delay in switching to STATE_RX_AACK_ON and a new interrupt, we introduce an intermediate 'was_tx' boolean just for this purpose. There is no Fixes tag applying here, many changes have been made on this area and the issue kind of always existed.
CVE-2024-56695 1 Linux 1 Linux Kernel 2025-07-12 7.8 High
In the Linux kernel, the following vulnerability has been resolved: drm/amdkfd: Use dynamic allocation for CU occupancy array in 'kfd_get_cu_occupancy()' The `kfd_get_cu_occupancy` function previously declared a large `cu_occupancy` array as a local variable, which could lead to stack overflows due to excessive stack usage. This commit replaces the static array allocation with dynamic memory allocation using `kcalloc`, thereby reducing the stack size. This change avoids the risk of stack overflows in kernel space, in scenarios where `AMDGPU_MAX_QUEUES` is large. The allocated memory is freed using `kfree` before the function returns to prevent memory leaks. Fixes the below with gcc W=1: drivers/gpu/drm/amd/amdgpu/../amdkfd/kfd_process.c: In function ‘kfd_get_cu_occupancy’: drivers/gpu/drm/amd/amdgpu/../amdkfd/kfd_process.c:322:1: warning: the frame size of 1056 bytes is larger than 1024 bytes [-Wframe-larger-than=] 322 | } | ^
CVE-2024-56573 1 Linux 1 Linux Kernel 2025-07-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: efi/libstub: Free correct pointer on failure cmdline_ptr is an out parameter, which is not allocated by the function itself, and likely points into the caller's stack. cmdline refers to the pool allocation that should be freed when cleaning up after a failure, so pass this instead to free_pool().
CVE-2022-48785 1 Linux 1 Linux Kernel 2025-07-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ipv6: mcast: use rcu-safe version of ipv6_get_lladdr() Some time ago 8965779d2c0e ("ipv6,mcast: always hold idev->lock before mca_lock") switched ipv6_get_lladdr() to __ipv6_get_lladdr(), which is rcu-unsafe version. That was OK, because idev->lock was held for these codepaths. In 88e2ca308094 ("mld: convert ifmcaddr6 to RCU") these external locks were removed, so we probably need to restore the original rcu-safe call. Otherwise, we occasionally get a machine crashed/stalled with the following in dmesg: [ 3405.966610][T230589] general protection fault, probably for non-canonical address 0xdead00000000008c: 0000 [#1] SMP NOPTI [ 3405.982083][T230589] CPU: 44 PID: 230589 Comm: kworker/44:3 Tainted: G O 5.15.19-cloudflare-2022.2.1 #1 [ 3405.998061][T230589] Hardware name: SUPA-COOL-SERV [ 3406.009552][T230589] Workqueue: mld mld_ifc_work [ 3406.017224][T230589] RIP: 0010:__ipv6_get_lladdr+0x34/0x60 [ 3406.025780][T230589] Code: 57 10 48 83 c7 08 48 89 e5 48 39 d7 74 3e 48 8d 82 38 ff ff ff eb 13 48 8b 90 d0 00 00 00 48 8d 82 38 ff ff ff 48 39 d7 74 22 <66> 83 78 32 20 77 1b 75 e4 89 ca 23 50 2c 75 dd 48 8b 50 08 48 8b [ 3406.055748][T230589] RSP: 0018:ffff94e4b3fc3d10 EFLAGS: 00010202 [ 3406.065617][T230589] RAX: dead00000000005a RBX: ffff94e4b3fc3d30 RCX: 0000000000000040 [ 3406.077477][T230589] RDX: dead000000000122 RSI: ffff94e4b3fc3d30 RDI: ffff8c3a31431008 [ 3406.089389][T230589] RBP: ffff94e4b3fc3d10 R08: 0000000000000000 R09: 0000000000000000 [ 3406.101445][T230589] R10: ffff8c3a31430000 R11: 000000000000000b R12: ffff8c2c37887100 [ 3406.113553][T230589] R13: ffff8c3a39537000 R14: 00000000000005dc R15: ffff8c3a31431000 [ 3406.125730][T230589] FS: 0000000000000000(0000) GS:ffff8c3b9fc80000(0000) knlGS:0000000000000000 [ 3406.138992][T230589] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 3406.149895][T230589] CR2: 00007f0dfea1db60 CR3: 000000387b5f2000 CR4: 0000000000350ee0 [ 3406.162421][T230589] Call Trace: [ 3406.170235][T230589] <TASK> [ 3406.177736][T230589] mld_newpack+0xfe/0x1a0 [ 3406.186686][T230589] add_grhead+0x87/0xa0 [ 3406.195498][T230589] add_grec+0x485/0x4e0 [ 3406.204310][T230589] ? newidle_balance+0x126/0x3f0 [ 3406.214024][T230589] mld_ifc_work+0x15d/0x450 [ 3406.223279][T230589] process_one_work+0x1e6/0x380 [ 3406.232982][T230589] worker_thread+0x50/0x3a0 [ 3406.242371][T230589] ? rescuer_thread+0x360/0x360 [ 3406.252175][T230589] kthread+0x127/0x150 [ 3406.261197][T230589] ? set_kthread_struct+0x40/0x40 [ 3406.271287][T230589] ret_from_fork+0x22/0x30 [ 3406.280812][T230589] </TASK> [ 3406.288937][T230589] Modules linked in: ... [last unloaded: kheaders] [ 3406.476714][T230589] ---[ end trace 3525a7655f2f3b9e ]---
CVE-2024-26850 1 Linux 1 Linux Kernel 2025-07-12 4.4 Medium
In the Linux kernel, the following vulnerability has been resolved: mm/debug_vm_pgtable: fix BUG_ON with pud advanced test Architectures like powerpc add debug checks to ensure we find only devmap PUD pte entries. These debug checks are only done with CONFIG_DEBUG_VM. This patch marks the ptes used for PUD advanced test devmap pte entries so that we don't hit on debug checks on architecture like ppc64 as below. WARNING: CPU: 2 PID: 1 at arch/powerpc/mm/book3s64/radix_pgtable.c:1382 radix__pud_hugepage_update+0x38/0x138 .... NIP [c0000000000a7004] radix__pud_hugepage_update+0x38/0x138 LR [c0000000000a77a8] radix__pudp_huge_get_and_clear+0x28/0x60 Call Trace: [c000000004a2f950] [c000000004a2f9a0] 0xc000000004a2f9a0 (unreliable) [c000000004a2f980] [000d34c100000000] 0xd34c100000000 [c000000004a2f9a0] [c00000000206ba98] pud_advanced_tests+0x118/0x334 [c000000004a2fa40] [c00000000206db34] debug_vm_pgtable+0xcbc/0x1c48 [c000000004a2fc10] [c00000000000fd28] do_one_initcall+0x60/0x388 Also kernel BUG at arch/powerpc/mm/book3s64/pgtable.c:202! .... NIP [c000000000096510] pudp_huge_get_and_clear_full+0x98/0x174 LR [c00000000206bb34] pud_advanced_tests+0x1b4/0x334 Call Trace: [c000000004a2f950] [000d34c100000000] 0xd34c100000000 (unreliable) [c000000004a2f9a0] [c00000000206bb34] pud_advanced_tests+0x1b4/0x334 [c000000004a2fa40] [c00000000206db34] debug_vm_pgtable+0xcbc/0x1c48 [c000000004a2fc10] [c00000000000fd28] do_one_initcall+0x60/0x388
CVE-2024-56589 1 Linux 1 Linux 2025-07-12 4.4 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: hisi_sas: Add cond_resched() for no forced preemption model For no forced preemption model kernel, in the scenario where the expander is connected to 12 high performance SAS SSDs, the following call trace may occur: [ 214.409199][ C240] watchdog: BUG: soft lockup - CPU#240 stuck for 22s! [irq/149-hisi_sa:3211] [ 214.568533][ C240] pstate: 60400009 (nZCv daif +PAN -UAO -TCO BTYPE=--) [ 214.575224][ C240] pc : fput_many+0x8c/0xdc [ 214.579480][ C240] lr : fput+0x1c/0xf0 [ 214.583302][ C240] sp : ffff80002de2b900 [ 214.587298][ C240] x29: ffff80002de2b900 x28: ffff1082aa412000 [ 214.593291][ C240] x27: ffff3062a0348c08 x26: ffff80003a9f6000 [ 214.599284][ C240] x25: ffff1062bbac5c40 x24: 0000000000001000 [ 214.605277][ C240] x23: 000000000000000a x22: 0000000000000001 [ 214.611270][ C240] x21: 0000000000001000 x20: 0000000000000000 [ 214.617262][ C240] x19: ffff3062a41ae580 x18: 0000000000010000 [ 214.623255][ C240] x17: 0000000000000001 x16: ffffdb3a6efe5fc0 [ 214.629248][ C240] x15: ffffffffffffffff x14: 0000000003ffffff [ 214.635241][ C240] x13: 000000000000ffff x12: 000000000000029c [ 214.641234][ C240] x11: 0000000000000006 x10: ffff80003a9f7fd0 [ 214.647226][ C240] x9 : ffffdb3a6f0482fc x8 : 0000000000000001 [ 214.653219][ C240] x7 : 0000000000000002 x6 : 0000000000000080 [ 214.659212][ C240] x5 : ffff55480ee9b000 x4 : fffffde7f94c6554 [ 214.665205][ C240] x3 : 0000000000000002 x2 : 0000000000000020 [ 214.671198][ C240] x1 : 0000000000000021 x0 : ffff3062a41ae5b8 [ 214.677191][ C240] Call trace: [ 214.680320][ C240] fput_many+0x8c/0xdc [ 214.684230][ C240] fput+0x1c/0xf0 [ 214.687707][ C240] aio_complete_rw+0xd8/0x1fc [ 214.692225][ C240] blkdev_bio_end_io+0x98/0x140 [ 214.696917][ C240] bio_endio+0x160/0x1bc [ 214.701001][ C240] blk_update_request+0x1c8/0x3bc [ 214.705867][ C240] scsi_end_request+0x3c/0x1f0 [ 214.710471][ C240] scsi_io_completion+0x7c/0x1a0 [ 214.715249][ C240] scsi_finish_command+0x104/0x140 [ 214.720200][ C240] scsi_softirq_done+0x90/0x180 [ 214.724892][ C240] blk_mq_complete_request+0x5c/0x70 [ 214.730016][ C240] scsi_mq_done+0x48/0xac [ 214.734194][ C240] sas_scsi_task_done+0xbc/0x16c [libsas] [ 214.739758][ C240] slot_complete_v3_hw+0x260/0x760 [hisi_sas_v3_hw] [ 214.746185][ C240] cq_thread_v3_hw+0xbc/0x190 [hisi_sas_v3_hw] [ 214.752179][ C240] irq_thread_fn+0x34/0xa4 [ 214.756435][ C240] irq_thread+0xc4/0x130 [ 214.760520][ C240] kthread+0x108/0x13c [ 214.764430][ C240] ret_from_fork+0x10/0x18 This is because in the hisi_sas driver, both the hardware interrupt handler and the interrupt thread are executed on the same CPU. In the performance test scenario, function irq_wait_for_interrupt() will always return 0 if lots of interrupts occurs and the CPU will be continuously consumed. As a result, the CPU cannot run the watchdog thread. When the watchdog time exceeds the specified time, call trace occurs. To fix it, add cond_resched() to execute the watchdog thread.
CVE-2024-53233 1 Linux 1 Linux Kernel 2025-07-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: unicode: Fix utf8_load() error path utf8_load() requests the symbol "utf8_data_table" and then checks if the requested UTF-8 version is supported. If it's unsupported, it tries to put the data table using symbol_put(). If an unsupported version is requested, symbol_put() fails like this: kernel BUG at kernel/module/main.c:786! RIP: 0010:__symbol_put+0x93/0xb0 Call Trace: <TASK> ? __die_body.cold+0x19/0x27 ? die+0x2e/0x50 ? do_trap+0xca/0x110 ? do_error_trap+0x65/0x80 ? __symbol_put+0x93/0xb0 ? exc_invalid_op+0x51/0x70 ? __symbol_put+0x93/0xb0 ? asm_exc_invalid_op+0x1a/0x20 ? __pfx_cmp_name+0x10/0x10 ? __symbol_put+0x93/0xb0 ? __symbol_put+0x62/0xb0 utf8_load+0xf8/0x150 That happens because symbol_put() expects the unique string that identify the symbol, instead of a pointer to the loaded symbol. Fix that by using such string.
CVE-2023-53056 1 Linux 1 Linux Kernel 2025-07-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Synchronize the IOCB count to be in order A system hang was observed with the following call trace: BUG: kernel NULL pointer dereference, address: 0000000000000000 PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 15 PID: 86747 Comm: nvme Kdump: loaded Not tainted 6.2.0+ #1 Hardware name: Dell Inc. PowerEdge R6515/04F3CJ, BIOS 2.7.3 03/31/2022 RIP: 0010:__wake_up_common+0x55/0x190 Code: 41 f6 01 04 0f 85 b2 00 00 00 48 8b 43 08 4c 8d 40 e8 48 8d 43 08 48 89 04 24 48 89 c6\ 49 8d 40 18 48 39 c6 0f 84 e9 00 00 00 <49> 8b 40 18 89 6c 24 14 31 ed 4c 8d 60 e8 41 8b 18 f6 c3 04 75 5d RSP: 0018:ffffb05a82afbba0 EFLAGS: 00010082 RAX: 0000000000000000 RBX: ffff8f9b83a00018 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffff8f9b83a00020 RDI: ffff8f9b83a00018 RBP: 0000000000000001 R08: ffffffffffffffe8 R09: ffffb05a82afbbf8 R10: 70735f7472617473 R11: 5f30307832616c71 R12: 0000000000000001 R13: 0000000000000003 R14: 0000000000000000 R15: 0000000000000000 FS: 00007f815cf4c740(0000) GS:ffff8f9eeed80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 000000010633a000 CR4: 0000000000350ee0 Call Trace: <TASK> __wake_up_common_lock+0x83/0xd0 qla_nvme_ls_req+0x21b/0x2b0 [qla2xxx] __nvme_fc_send_ls_req+0x1b5/0x350 [nvme_fc] nvme_fc_xmt_disconnect_assoc+0xca/0x110 [nvme_fc] nvme_fc_delete_association+0x1bf/0x220 [nvme_fc] ? nvme_remove_namespaces+0x9f/0x140 [nvme_core] nvme_do_delete_ctrl+0x5b/0xa0 [nvme_core] nvme_sysfs_delete+0x5f/0x70 [nvme_core] kernfs_fop_write_iter+0x12b/0x1c0 vfs_write+0x2a3/0x3b0 ksys_write+0x5f/0xe0 do_syscall_64+0x5c/0x90 ? syscall_exit_work+0x103/0x130 ? syscall_exit_to_user_mode+0x12/0x30 ? do_syscall_64+0x69/0x90 ? exit_to_user_mode_loop+0xd0/0x130 ? exit_to_user_mode_prepare+0xec/0x100 ? syscall_exit_to_user_mode+0x12/0x30 ? do_syscall_64+0x69/0x90 ? syscall_exit_to_user_mode+0x12/0x30 ? do_syscall_64+0x69/0x90 entry_SYSCALL_64_after_hwframe+0x72/0xdc RIP: 0033:0x7f815cd3eb97 The IOCB counts are out of order and that would block any commands from going out and subsequently hang the system. Synchronize the IOCB count to be in correct order.
CVE-2024-57804 1 Linux 1 Linux Kernel 2025-07-12 4.4 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: mpi3mr: Fix corrupt config pages PHY state is switched in sysfs The driver, through the SAS transport, exposes a sysfs interface to enable/disable PHYs in a controller/expander setup. When multiple PHYs are disabled and enabled in rapid succession, the persistent and current config pages related to SAS IO unit/SAS Expander pages could get corrupted. Use separate memory for each config request.
CVE-2023-53139 1 Linux 1 Linux Kernel 2025-07-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nfc: fdp: add null check of devm_kmalloc_array in fdp_nci_i2c_read_device_properties devm_kmalloc_array may fails, *fw_vsc_cfg might be null and cause out-of-bounds write in device_property_read_u8_array later.
CVE-2024-26985 1 Linux 1 Linux Kernel 2025-07-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/xe: Fix bo leak in intel_fb_bo_framebuffer_init Add a unreference bo in the error path, to prevent leaking a bo ref. Return 0 on success to clarify the success path. (cherry picked from commit a2f3d731be3893e730417ae3190760fcaffdf549)
CVE-2024-56560 1 Linux 1 Linux Kernel 2025-07-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: slab: Fix too strict alignment check in create_cache() On m68k, where the minimum alignment of unsigned long is 2 bytes: Kernel panic - not syncing: __kmem_cache_create_args: Failed to create slab 'io_kiocb'. Error -22 CPU: 0 UID: 0 PID: 1 Comm: swapper Not tainted 6.12.0-atari-03776-g7eaa1f99261a #1783 Stack from 0102fe5c: 0102fe5c 00514a2b 00514a2b ffffff00 00000001 0051f5ed 00425e78 00514a2b 0041eb74 ffffffea 00000310 0051f5ed ffffffea ffffffea 00601f60 00000044 0102ff20 000e7a68 0051ab8e 004383b8 0051f5ed ffffffea 000000b8 00000007 01020c00 00000000 000e77f0 0041e5f0 005f67c0 0051f5ed 000000b6 0102fef4 00000310 0102fef4 00000000 00000016 005f676c 0060a34c 00000010 00000004 00000038 0000009a 01000000 000000b8 005f668e 0102e000 00001372 0102ff88 Call Trace: [<00425e78>] dump_stack+0xc/0x10 [<0041eb74>] panic+0xd8/0x26c [<000e7a68>] __kmem_cache_create_args+0x278/0x2e8 [<000e77f0>] __kmem_cache_create_args+0x0/0x2e8 [<0041e5f0>] memset+0x0/0x8c [<005f67c0>] io_uring_init+0x54/0xd2 The minimal alignment of an integral type may differ from its size, hence is not safe to assume that an arbitrary freeptr_t (which is basically an unsigned long) is always aligned to 4 or 8 bytes. As nothing seems to require the additional alignment, it is safe to fix this by relaxing the check to the actual minimum alignment of freeptr_t.
CVE-2024-41017 1 Linux 1 Linux Kernel 2025-07-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: jfs: don't walk off the end of ealist Add a check before visiting the members of ea to make sure each ea stays within the ealist.
CVE-2022-49645 1 Linux 1 Linux Kernel 2025-07-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/panfrost: Fix shrinker list corruption by madvise IOCTL Calling madvise IOCTL twice on BO causes memory shrinker list corruption and crashes kernel because BO is already on the list and it's added to the list again, while BO should be removed from the list before it's re-added. Fix it.
CVE-2024-48876 1 Linux 1 Linux Kernel 2025-07-12 7.0 High
In the Linux kernel, the following vulnerability has been resolved: stackdepot: fix stack_depot_save_flags() in NMI context Per documentation, stack_depot_save_flags() was meant to be usable from NMI context if STACK_DEPOT_FLAG_CAN_ALLOC is unset. However, it still would try to take the pool_lock in an attempt to save a stack trace in the current pool (if space is available). This could result in deadlock if an NMI is handled while pool_lock is already held. To avoid deadlock, only try to take the lock in NMI context and give up if unsuccessful. The documentation is fixed to clearly convey this.
CVE-2022-49686 1 Linux 1 Linux Kernel 2025-07-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: usb: gadget: uvc: fix list double add in uvcg_video_pump A panic can occur if the endpoint becomes disabled and the uvcg_video_pump adds the request back to the req_free list after it has already been queued to the endpoint. The endpoint complete will add the request back to the req_free list. Invalidate the local request handle once it's been queued. <6>[ 246.796704][T13726] configfs-gadget gadget: uvc: uvc_function_set_alt(1, 0) <3>[ 246.797078][ T26] list_add double add: new=ffffff878bee5c40, prev=ffffff878bee5c40, next=ffffff878b0f0a90. <6>[ 246.797213][ T26] ------------[ cut here ]------------ <2>[ 246.797224][ T26] kernel BUG at lib/list_debug.c:31! <6>[ 246.807073][ T26] Call trace: <6>[ 246.807180][ T26] uvcg_video_pump+0x364/0x38c <6>[ 246.807366][ T26] process_one_work+0x2a4/0x544 <6>[ 246.807394][ T26] worker_thread+0x350/0x784 <6>[ 246.807442][ T26] kthread+0x2ac/0x320
CVE-2024-39505 1 Linux 1 Linux Kernel 2025-07-12 4.4 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/komeda: check for error-valued pointer komeda_pipeline_get_state() may return an error-valued pointer, thus check the pointer for negative or null value before dereferencing.
CVE-2025-38080 1 Linux 1 Linux Kernel 2025-07-11 7.0 High
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Increase block_sequence array size [Why] It's possible to generate more than 50 steps in hwss_build_fast_sequence, for example with a 6-pipe asic where all pipes are in one MPC chain. This overflows the block_sequence buffer and corrupts block_sequence_steps, causing a crash. [How] Expand block_sequence to 100 items. A naive upper bound on the possible number of steps for a 6-pipe asic, ignoring the potential for steps to be mutually exclusive, is 91 with current code, therefore 100 is sufficient.
CVE-2024-57922 1 Linux 1 Linux Kernel 2025-07-11 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add check for granularity in dml ceil/floor helpers [Why] Wrapper functions for dcn_bw_ceil2() and dcn_bw_floor2() should check for granularity is non zero to avoid assert and divide-by-zero error in dcn_bw_ functions. [How] Add check for granularity 0. (cherry picked from commit f6e09701c3eb2ccb8cb0518e0b67f1c69742a4ec)