| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
chardev: fix error handling in cdev_device_add()
While doing fault injection test, I got the following report:
------------[ cut here ]------------
kobject: '(null)' (0000000039956980): is not initialized, yet kobject_put() is being called.
WARNING: CPU: 3 PID: 6306 at kobject_put+0x23d/0x4e0
CPU: 3 PID: 6306 Comm: 283 Tainted: G W 6.1.0-rc2-00005-g307c1086d7c9 #1253
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
RIP: 0010:kobject_put+0x23d/0x4e0
Call Trace:
<TASK>
cdev_device_add+0x15e/0x1b0
__iio_device_register+0x13b4/0x1af0 [industrialio]
__devm_iio_device_register+0x22/0x90 [industrialio]
max517_probe+0x3d8/0x6b4 [max517]
i2c_device_probe+0xa81/0xc00
When device_add() is injected fault and returns error, if dev->devt is not set,
cdev_add() is not called, cdev_del() is not needed. Fix this by checking dev->devt
in error path. |
| In the Linux kernel, the following vulnerability has been resolved:
mtd: core: add missing of_node_get() in dynamic partitions code
This fixes unbalanced of_node_put():
[ 1.078910] 6 cmdlinepart partitions found on MTD device gpmi-nand
[ 1.085116] Creating 6 MTD partitions on "gpmi-nand":
[ 1.090181] 0x000000000000-0x000008000000 : "nandboot"
[ 1.096952] 0x000008000000-0x000009000000 : "nandfit"
[ 1.103547] 0x000009000000-0x00000b000000 : "nandkernel"
[ 1.110317] 0x00000b000000-0x00000c000000 : "nanddtb"
[ 1.115525] ------------[ cut here ]------------
[ 1.120141] refcount_t: addition on 0; use-after-free.
[ 1.125328] WARNING: CPU: 0 PID: 1 at lib/refcount.c:25 refcount_warn_saturate+0xdc/0x148
[ 1.133528] Modules linked in:
[ 1.136589] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 6.0.0-rc7-next-20220930-04543-g8cf3f7
[ 1.146342] Hardware name: Freescale i.MX8DXL DDR3L EVK (DT)
[ 1.151999] pstate: 600000c5 (nZCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 1.158965] pc : refcount_warn_saturate+0xdc/0x148
[ 1.163760] lr : refcount_warn_saturate+0xdc/0x148
[ 1.168556] sp : ffff800009ddb080
[ 1.171866] x29: ffff800009ddb080 x28: ffff800009ddb35a x27: 0000000000000002
[ 1.179015] x26: ffff8000098b06ad x25: ffffffffffffffff x24: ffff0a00ffffff05
[ 1.186165] x23: ffff00001fdf6470 x22: ffff800009ddb367 x21: 0000000000000000
[ 1.193314] x20: ffff00001fdfebe8 x19: ffff00001fdfec50 x18: ffffffffffffffff
[ 1.200464] x17: 0000000000000000 x16: 0000000000000118 x15: 0000000000000004
[ 1.207614] x14: 0000000000000fff x13: ffff800009bca248 x12: 0000000000000003
[ 1.214764] x11: 00000000ffffefff x10: c0000000ffffefff x9 : 4762cb2ccb52de00
[ 1.221914] x8 : 4762cb2ccb52de00 x7 : 205d313431303231 x6 : 312e31202020205b
[ 1.229063] x5 : ffff800009d55c1f x4 : 0000000000000001 x3 : 0000000000000000
[ 1.236213] x2 : 0000000000000000 x1 : ffff800009954be6 x0 : 000000000000002a
[ 1.243365] Call trace:
[ 1.245806] refcount_warn_saturate+0xdc/0x148
[ 1.250253] kobject_get+0x98/0x9c
[ 1.253658] of_node_get+0x20/0x34
[ 1.257072] of_fwnode_get+0x3c/0x54
[ 1.260652] fwnode_get_nth_parent+0xd8/0xf4
[ 1.264926] fwnode_full_name_string+0x3c/0xb4
[ 1.269373] device_node_string+0x498/0x5b4
[ 1.273561] pointer+0x41c/0x5d0
[ 1.276793] vsnprintf+0x4d8/0x694
[ 1.280198] vprintk_store+0x164/0x528
[ 1.283951] vprintk_emit+0x98/0x164
[ 1.287530] vprintk_default+0x44/0x6c
[ 1.291284] vprintk+0xf0/0x134
[ 1.294428] _printk+0x54/0x7c
[ 1.297486] of_node_release+0xe8/0x128
[ 1.301326] kobject_put+0x98/0xfc
[ 1.304732] of_node_put+0x1c/0x28
[ 1.308137] add_mtd_device+0x484/0x6d4
[ 1.311977] add_mtd_partitions+0xf0/0x1d0
[ 1.316078] parse_mtd_partitions+0x45c/0x518
[ 1.320439] mtd_device_parse_register+0xb0/0x274
[ 1.325147] gpmi_nand_probe+0x51c/0x650
[ 1.329074] platform_probe+0xa8/0xd0
[ 1.332740] really_probe+0x130/0x334
[ 1.336406] __driver_probe_device+0xb4/0xe0
[ 1.340681] driver_probe_device+0x3c/0x1f8
[ 1.344869] __driver_attach+0xdc/0x1a4
[ 1.348708] bus_for_each_dev+0x80/0xcc
[ 1.352548] driver_attach+0x24/0x30
[ 1.356127] bus_add_driver+0x108/0x1f4
[ 1.359967] driver_register+0x78/0x114
[ 1.363807] __platform_driver_register+0x24/0x30
[ 1.368515] gpmi_nand_driver_init+0x1c/0x28
[ 1.372798] do_one_initcall+0xbc/0x238
[ 1.376638] do_initcall_level+0x94/0xb4
[ 1.380565] do_initcalls+0x54/0x94
[ 1.384058] do_basic_setup+0x1c/0x28
[ 1.387724] kernel_init_freeable+0x110/0x188
[ 1.392084] kernel_init+0x20/0x1a0
[ 1.395578] ret_from_fork+0x10/0x20
[ 1.399157] ---[ end trace 0000000000000000 ]---
[ 1.403782] ------------[ cut here ]------------ |
| In the Linux kernel, the following vulnerability has been resolved:
mm,hugetlb: take hugetlb_lock before decrementing h->resv_huge_pages
The h->*_huge_pages counters are protected by the hugetlb_lock, but
alloc_huge_page has a corner case where it can decrement the counter
outside of the lock.
This could lead to a corrupted value of h->resv_huge_pages, which we have
observed on our systems.
Take the hugetlb_lock before decrementing h->resv_huge_pages to avoid a
potential race. |
| In the Linux kernel, the following vulnerability has been resolved:
kcm: annotate data-races around kcm->rx_psock
kcm->rx_psock can be read locklessly in kcm_rfree().
Annotate the read and writes accordingly.
We do the same for kcm->rx_wait in the following patch.
syzbot reported:
BUG: KCSAN: data-race in kcm_rfree / unreserve_rx_kcm
write to 0xffff888123d827b8 of 8 bytes by task 2758 on cpu 1:
unreserve_rx_kcm+0x72/0x1f0 net/kcm/kcmsock.c:313
kcm_rcv_strparser+0x2b5/0x3a0 net/kcm/kcmsock.c:373
__strp_recv+0x64c/0xd20 net/strparser/strparser.c:301
strp_recv+0x6d/0x80 net/strparser/strparser.c:335
tcp_read_sock+0x13e/0x5a0 net/ipv4/tcp.c:1703
strp_read_sock net/strparser/strparser.c:358 [inline]
do_strp_work net/strparser/strparser.c:406 [inline]
strp_work+0xe8/0x180 net/strparser/strparser.c:415
process_one_work+0x3d3/0x720 kernel/workqueue.c:2289
worker_thread+0x618/0xa70 kernel/workqueue.c:2436
kthread+0x1a9/0x1e0 kernel/kthread.c:376
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:306
read to 0xffff888123d827b8 of 8 bytes by task 5859 on cpu 0:
kcm_rfree+0x14c/0x220 net/kcm/kcmsock.c:181
skb_release_head_state+0x8e/0x160 net/core/skbuff.c:841
skb_release_all net/core/skbuff.c:852 [inline]
__kfree_skb net/core/skbuff.c:868 [inline]
kfree_skb_reason+0x5c/0x260 net/core/skbuff.c:891
kfree_skb include/linux/skbuff.h:1216 [inline]
kcm_recvmsg+0x226/0x2b0 net/kcm/kcmsock.c:1161
____sys_recvmsg+0x16c/0x2e0
___sys_recvmsg net/socket.c:2743 [inline]
do_recvmmsg+0x2f1/0x710 net/socket.c:2837
__sys_recvmmsg net/socket.c:2916 [inline]
__do_sys_recvmmsg net/socket.c:2939 [inline]
__se_sys_recvmmsg net/socket.c:2932 [inline]
__x64_sys_recvmmsg+0xde/0x160 net/socket.c:2932
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x2b/0x70 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
value changed: 0xffff88812971ce00 -> 0x0000000000000000
Reported by Kernel Concurrency Sanitizer on:
CPU: 0 PID: 5859 Comm: syz-executor.3 Not tainted 6.0.0-syzkaller-12189-g19d17ab7c68b-dirty #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/22/2022 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm/dp: fix bridge lifetime
Device-managed resources allocated post component bind must be tied to
the lifetime of the aggregate DRM device or they will not necessarily be
released when binding of the aggregate device is deferred.
This can lead resource leaks or failure to bind the aggregate device
when binding is later retried and a second attempt to allocate the
resources is made.
For the DP bridges, previously allocated bridges will leak on probe
deferral.
Fix this by amending the DP parser interface and tying the lifetime of
the bridge device to the DRM device rather than DP platform device.
Patchwork: https://patchwork.freedesktop.org/patch/502667/ |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/msg_ring: Fix NULL pointer dereference in io_msg_send_fd()
Syzkaller produced the below call trace:
BUG: KASAN: null-ptr-deref in io_msg_ring+0x3cb/0x9f0
Write of size 8 at addr 0000000000000070 by task repro/16399
CPU: 0 PID: 16399 Comm: repro Not tainted 6.1.0-rc1 #28
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-2.el7
Call Trace:
<TASK>
dump_stack_lvl+0xcd/0x134
? io_msg_ring+0x3cb/0x9f0
kasan_report+0xbc/0xf0
? io_msg_ring+0x3cb/0x9f0
kasan_check_range+0x140/0x190
io_msg_ring+0x3cb/0x9f0
? io_msg_ring_prep+0x300/0x300
io_issue_sqe+0x698/0xca0
io_submit_sqes+0x92f/0x1c30
__do_sys_io_uring_enter+0xae4/0x24b0
....
RIP: 0033:0x7f2eaf8f8289
RSP: 002b:00007fff40939718 EFLAGS: 00000246 ORIG_RAX: 00000000000001aa
RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f2eaf8f8289
RDX: 0000000000000000 RSI: 0000000000006f71 RDI: 0000000000000004
RBP: 00007fff409397a0 R08: 0000000000000000 R09: 0000000000000039
R10: 0000000000000000 R11: 0000000000000246 R12: 00000000004006d0
R13: 00007fff40939880 R14: 0000000000000000 R15: 0000000000000000
</TASK>
Kernel panic - not syncing: panic_on_warn set ...
We don't have a NULL check on file_ptr in io_msg_send_fd() function,
so when file_ptr is NUL src_file is also NULL and get_file()
dereferences a NULL pointer and leads to above crash.
Add a NULL check to fix this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
phy: hisilicon: Fix an out of bounds check in hisi_inno_phy_probe()
The size of array 'priv->ports[]' is INNO_PHY_PORT_NUM.
In the for loop, 'i' is used as the index for array 'priv->ports[]'
with a check (i > INNO_PHY_PORT_NUM) which indicates that
INNO_PHY_PORT_NUM is allowed value for 'i' in the same loop.
This > comparison needs to be changed to >=, otherwise it potentially leads
to an out of bounds write on the next iteration through the loop |
| Race in v8 in Google Chrome prior to 143.0.7499.41 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: Medium) |
| Bad cast in Loader in Google Chrome prior to 143.0.7499.41 allowed a remote attacker who had compromised the renderer process to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: Medium) |
| Inappropriate implementation in Passwords in Google Chrome prior to 143.0.7499.41 allowed a local attacker to bypass authentication via physical access to the device. (Chromium security severity: Low) |
| In the Linux kernel, the following vulnerability has been resolved:
media: pci: mg4b: fix uninitialized iio scan data
Fix potential leak of uninitialized stack data to userspace by ensuring
that the `scan` structure is zeroed before use. |
| In the Linux kernel, the following vulnerability has been resolved:
hfsplus: fix KMSAN uninit-value issue in __hfsplus_ext_cache_extent()
The syzbot reported issue in __hfsplus_ext_cache_extent():
[ 70.194323][ T9350] BUG: KMSAN: uninit-value in __hfsplus_ext_cache_extent+0x7d0/0x990
[ 70.195022][ T9350] __hfsplus_ext_cache_extent+0x7d0/0x990
[ 70.195530][ T9350] hfsplus_file_extend+0x74f/0x1cf0
[ 70.195998][ T9350] hfsplus_get_block+0xe16/0x17b0
[ 70.196458][ T9350] __block_write_begin_int+0x962/0x2ce0
[ 70.196959][ T9350] cont_write_begin+0x1000/0x1950
[ 70.197416][ T9350] hfsplus_write_begin+0x85/0x130
[ 70.197873][ T9350] generic_perform_write+0x3e8/0x1060
[ 70.198374][ T9350] __generic_file_write_iter+0x215/0x460
[ 70.198892][ T9350] generic_file_write_iter+0x109/0x5e0
[ 70.199393][ T9350] vfs_write+0xb0f/0x14e0
[ 70.199771][ T9350] ksys_write+0x23e/0x490
[ 70.200149][ T9350] __x64_sys_write+0x97/0xf0
[ 70.200570][ T9350] x64_sys_call+0x3015/0x3cf0
[ 70.201065][ T9350] do_syscall_64+0xd9/0x1d0
[ 70.201506][ T9350] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 70.202054][ T9350]
[ 70.202279][ T9350] Uninit was created at:
[ 70.202693][ T9350] __kmalloc_noprof+0x621/0xf80
[ 70.203149][ T9350] hfsplus_find_init+0x8d/0x1d0
[ 70.203602][ T9350] hfsplus_file_extend+0x6ca/0x1cf0
[ 70.204087][ T9350] hfsplus_get_block+0xe16/0x17b0
[ 70.204561][ T9350] __block_write_begin_int+0x962/0x2ce0
[ 70.205074][ T9350] cont_write_begin+0x1000/0x1950
[ 70.205547][ T9350] hfsplus_write_begin+0x85/0x130
[ 70.206017][ T9350] generic_perform_write+0x3e8/0x1060
[ 70.206519][ T9350] __generic_file_write_iter+0x215/0x460
[ 70.207042][ T9350] generic_file_write_iter+0x109/0x5e0
[ 70.207552][ T9350] vfs_write+0xb0f/0x14e0
[ 70.207961][ T9350] ksys_write+0x23e/0x490
[ 70.208375][ T9350] __x64_sys_write+0x97/0xf0
[ 70.208810][ T9350] x64_sys_call+0x3015/0x3cf0
[ 70.209255][ T9350] do_syscall_64+0xd9/0x1d0
[ 70.209680][ T9350] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 70.210230][ T9350]
[ 70.210454][ T9350] CPU: 2 UID: 0 PID: 9350 Comm: repro Not tainted 6.12.0-rc5 #5
[ 70.211174][ T9350] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 70.212115][ T9350] =====================================================
[ 70.212734][ T9350] Disabling lock debugging due to kernel taint
[ 70.213284][ T9350] Kernel panic - not syncing: kmsan.panic set ...
[ 70.213858][ T9350] CPU: 2 UID: 0 PID: 9350 Comm: repro Tainted: G B 6.12.0-rc5 #5
[ 70.214679][ T9350] Tainted: [B]=BAD_PAGE
[ 70.215057][ T9350] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 70.215999][ T9350] Call Trace:
[ 70.216309][ T9350] <TASK>
[ 70.216585][ T9350] dump_stack_lvl+0x1fd/0x2b0
[ 70.217025][ T9350] dump_stack+0x1e/0x30
[ 70.217421][ T9350] panic+0x502/0xca0
[ 70.217803][ T9350] ? kmsan_get_metadata+0x13e/0x1c0
[ 70.218294][ Message fromT sy9350] kmsan_report+0x296/slogd@syzkaller 0x2aat Aug 18 22:11:058 ...
kernel
:[ 70.213284][ T9350] Kernel panic - not syncing: kmsan.panic [ 70.220179][ T9350] ? kmsan_get_metadata+0x13e/0x1c0
set ...
[ 70.221254][ T9350] ? __msan_warning+0x96/0x120
[ 70.222066][ T9350] ? __hfsplus_ext_cache_extent+0x7d0/0x990
[ 70.223023][ T9350] ? hfsplus_file_extend+0x74f/0x1cf0
[ 70.224120][ T9350] ? hfsplus_get_block+0xe16/0x17b0
[ 70.224946][ T9350] ? __block_write_begin_int+0x962/0x2ce0
[ 70.225756][ T9350] ? cont_write_begin+0x1000/0x1950
[ 70.226337][ T9350] ? hfsplus_write_begin+0x85/0x130
[ 70.226852][ T9350] ? generic_perform_write+0x3e8/0x1060
[ 70.227405][ T9350] ? __generic_file_write_iter+0x215/0x460
[ 70.227979][ T9350] ? generic_file_write_iter+0x109/0x5e0
[ 70.228540][ T9350] ? vfs_write+0xb0f/0x14e0
[ 70.228997][ T9350] ? ksys_write+0x23e/0x490
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
sctp: avoid NULL dereference when chunk data buffer is missing
chunk->skb pointer is dereferenced in the if-block where it's supposed
to be NULL only.
chunk->skb can only be NULL if chunk->head_skb is not. Check for frag_list
instead and do it just before replacing chunk->skb. We're sure that
otherwise chunk->skb is non-NULL because of outer if() condition. |
| In the Linux kernel, the following vulnerability has been resolved:
vfat: fix missing sb_min_blocksize() return value checks
When emulating an nvme device on qemu with both logical_block_size and
physical_block_size set to 8 KiB, but without format, a kernel panic
was triggered during the early boot stage while attempting to mount a
vfat filesystem.
[95553.682035] EXT4-fs (nvme0n1): unable to set blocksize
[95553.684326] EXT4-fs (nvme0n1): unable to set blocksize
[95553.686501] EXT4-fs (nvme0n1): unable to set blocksize
[95553.696448] ISOFS: unsupported/invalid hardware sector size 8192
[95553.697117] ------------[ cut here ]------------
[95553.697567] kernel BUG at fs/buffer.c:1582!
[95553.697984] Oops: invalid opcode: 0000 [#1] SMP NOPTI
[95553.698602] CPU: 0 UID: 0 PID: 7212 Comm: mount Kdump: loaded Not tainted 6.18.0-rc2+ #38 PREEMPT(voluntary)
[95553.699511] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014
[95553.700534] RIP: 0010:folio_alloc_buffers+0x1bb/0x1c0
[95553.701018] Code: 48 8b 15 e8 93 18 02 65 48 89 35 e0 93 18 02 48 83 c4 10 5b 41 5c 41 5d 41 5e 41 5f 5d 31 d2 31 c9 31 f6 31 ff c3 cc cc cc cc <0f> 0b 90 66 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 0f
[95553.702648] RSP: 0018:ffffd1b0c676f990 EFLAGS: 00010246
[95553.703132] RAX: ffff8cfc4176d820 RBX: 0000000000508c48 RCX: 0000000000000001
[95553.703805] RDX: 0000000000002000 RSI: 0000000000000000 RDI: 0000000000000000
[95553.704481] RBP: ffffd1b0c676f9c8 R08: 0000000000000000 R09: 0000000000000000
[95553.705148] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000001
[95553.705816] R13: 0000000000002000 R14: fffff8bc8257e800 R15: 0000000000000000
[95553.706483] FS: 000072ee77315840(0000) GS:ffff8cfdd2c8d000(0000) knlGS:0000000000000000
[95553.707248] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[95553.707782] CR2: 00007d8f2a9e5a20 CR3: 0000000039d0c006 CR4: 0000000000772ef0
[95553.708439] PKRU: 55555554
[95553.708734] Call Trace:
[95553.709015] <TASK>
[95553.709266] __getblk_slow+0xd2/0x230
[95553.709641] ? find_get_block_common+0x8b/0x530
[95553.710084] bdev_getblk+0x77/0xa0
[95553.710449] __bread_gfp+0x22/0x140
[95553.710810] fat_fill_super+0x23a/0xfc0
[95553.711216] ? __pfx_setup+0x10/0x10
[95553.711580] ? __pfx_vfat_fill_super+0x10/0x10
[95553.712014] vfat_fill_super+0x15/0x30
[95553.712401] get_tree_bdev_flags+0x141/0x1e0
[95553.712817] get_tree_bdev+0x10/0x20
[95553.713177] vfat_get_tree+0x15/0x20
[95553.713550] vfs_get_tree+0x2a/0x100
[95553.713910] vfs_cmd_create+0x62/0xf0
[95553.714273] __do_sys_fsconfig+0x4e7/0x660
[95553.714669] __x64_sys_fsconfig+0x20/0x40
[95553.715062] x64_sys_call+0x21ee/0x26a0
[95553.715453] do_syscall_64+0x80/0x670
[95553.715816] ? __fs_parse+0x65/0x1e0
[95553.716172] ? fat_parse_param+0x103/0x4b0
[95553.716587] ? vfs_parse_fs_param_source+0x21/0xa0
[95553.717034] ? __do_sys_fsconfig+0x3d9/0x660
[95553.717548] ? __x64_sys_fsconfig+0x20/0x40
[95553.717957] ? x64_sys_call+0x21ee/0x26a0
[95553.718360] ? do_syscall_64+0xb8/0x670
[95553.718734] ? __x64_sys_fsconfig+0x20/0x40
[95553.719141] ? x64_sys_call+0x21ee/0x26a0
[95553.719545] ? do_syscall_64+0xb8/0x670
[95553.719922] ? x64_sys_call+0x1405/0x26a0
[95553.720317] ? do_syscall_64+0xb8/0x670
[95553.720702] ? __x64_sys_close+0x3e/0x90
[95553.721080] ? x64_sys_call+0x1b5e/0x26a0
[95553.721478] ? do_syscall_64+0xb8/0x670
[95553.721841] ? irqentry_exit+0x43/0x50
[95553.722211] ? exc_page_fault+0x90/0x1b0
[95553.722681] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[95553.723166] RIP: 0033:0x72ee774f3afe
[95553.723562] Code: 73 01 c3 48 8b 0d 0a 33 0f 00 f7 d8 64 89 01 48 83 c8 ff c3 0f 1f 84 00 00 00 00 00 f3 0f 1e fa 49 89 ca b8 af 01 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d da 32 0f 00 f7 d8 64 89 01 48
[95553.725188] RSP: 002b:00007ffe97148978 EFLAGS: 00000246 ORIG_RAX: 00000000000001af
[95553.725892] RAX: ffffffffffffffda RBX:
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
xfs: fix out of bounds memory read error in symlink repair
xfs/286 produced this report on my test fleet:
==================================================================
BUG: KFENCE: out-of-bounds read in memcpy_orig+0x54/0x110
Out-of-bounds read at 0xffff88843fe9e038 (184B right of kfence-#184):
memcpy_orig+0x54/0x110
xrep_symlink_salvage_inline+0xb3/0xf0 [xfs]
xrep_symlink_salvage+0x100/0x110 [xfs]
xrep_symlink+0x2e/0x80 [xfs]
xrep_attempt+0x61/0x1f0 [xfs]
xfs_scrub_metadata+0x34f/0x5c0 [xfs]
xfs_ioc_scrubv_metadata+0x387/0x560 [xfs]
xfs_file_ioctl+0xe23/0x10e0 [xfs]
__x64_sys_ioctl+0x76/0xc0
do_syscall_64+0x4e/0x1e0
entry_SYSCALL_64_after_hwframe+0x4b/0x53
kfence-#184: 0xffff88843fe9df80-0xffff88843fe9dfea, size=107, cache=kmalloc-128
allocated by task 3470 on cpu 1 at 263329.131592s (192823.508886s ago):
xfs_init_local_fork+0x79/0xe0 [xfs]
xfs_iformat_local+0xa4/0x170 [xfs]
xfs_iformat_data_fork+0x148/0x180 [xfs]
xfs_inode_from_disk+0x2cd/0x480 [xfs]
xfs_iget+0x450/0xd60 [xfs]
xfs_bulkstat_one_int+0x6b/0x510 [xfs]
xfs_bulkstat_iwalk+0x1e/0x30 [xfs]
xfs_iwalk_ag_recs+0xdf/0x150 [xfs]
xfs_iwalk_run_callbacks+0xb9/0x190 [xfs]
xfs_iwalk_ag+0x1dc/0x2f0 [xfs]
xfs_iwalk_args.constprop.0+0x6a/0x120 [xfs]
xfs_iwalk+0xa4/0xd0 [xfs]
xfs_bulkstat+0xfa/0x170 [xfs]
xfs_ioc_fsbulkstat.isra.0+0x13a/0x230 [xfs]
xfs_file_ioctl+0xbf2/0x10e0 [xfs]
__x64_sys_ioctl+0x76/0xc0
do_syscall_64+0x4e/0x1e0
entry_SYSCALL_64_after_hwframe+0x4b/0x53
CPU: 1 UID: 0 PID: 1300113 Comm: xfs_scrub Not tainted 6.18.0-rc4-djwx #rc4 PREEMPT(lazy) 3d744dd94e92690f00a04398d2bd8631dcef1954
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-4.module+el8.8.0+21164+ed375313 04/01/2014
==================================================================
On further analysis, I realized that the second parameter to min() is
not correct. xfs_ifork::if_bytes is the size of the xfs_ifork::if_data
buffer. if_bytes can be smaller than the data fork size because:
(a) the forkoff code tries to keep the data area as large as possible
(b) for symbolic links, if_bytes is the ondisk file size + 1
(c) forkoff is always a multiple of 8.
Case in point: for a single-byte symlink target, forkoff will be
8 but the buffer will only be 2 bytes long.
In other words, the logic here is wrong and we walk off the end of the
incore buffer. Fix that. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/panthor: Fix kernel panic on partial unmap of a GPU VA region
This commit address a kernel panic issue that can happen if Userspace
tries to partially unmap a GPU virtual region (aka drm_gpuva).
The VM_BIND interface allows partial unmapping of a BO.
Panthor driver pre-allocates memory for the new drm_gpuva structures
that would be needed for the map/unmap operation, done using drm_gpuvm
layer. It expected that only one new drm_gpuva would be needed on umap
but a partial unmap can require 2 new drm_gpuva and that's why it
ended up doing a NULL pointer dereference causing a kernel panic.
Following dump was seen when partial unmap was exercised.
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000078
Mem abort info:
ESR = 0x0000000096000046
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x06: level 2 translation fault
Data abort info:
ISV = 0, ISS = 0x00000046, ISS2 = 0x00000000
CM = 0, WnR = 1, TnD = 0, TagAccess = 0
GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
user pgtable: 4k pages, 48-bit VAs, pgdp=000000088a863000
[000000000000078] pgd=080000088a842003, p4d=080000088a842003, pud=0800000884bf5003, pmd=0000000000000000
Internal error: Oops: 0000000096000046 [#1] PREEMPT SMP
<snip>
pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : panthor_gpuva_sm_step_remap+0xe4/0x330 [panthor]
lr : panthor_gpuva_sm_step_remap+0x6c/0x330 [panthor]
sp : ffff800085d43970
x29: ffff800085d43970 x28: ffff00080363e440 x27: ffff0008090c6000
x26: 0000000000000030 x25: ffff800085d439f8 x24: ffff00080d402000
x23: ffff800085d43b60 x22: ffff800085d439e0 x21: ffff00080abdb180
x20: 0000000000000000 x19: 0000000000000000 x18: 0000000000000010
x17: 6e656c202c303030 x16: 3666666666646466 x15: 393d61766f69202c
x14: 312d3d7361203a70 x13: 303030323d6e656c x12: ffff80008324bf58
x11: 0000000000000003 x10: 0000000000000002 x9 : ffff8000801a6a9c
x8 : ffff00080360b300 x7 : 0000000000000000 x6 : 000000088aa35fc7
x5 : fff1000080000000 x4 : ffff8000842ddd30 x3 : 0000000000000001
x2 : 0000000100000000 x1 : 0000000000000001 x0 : 0000000000000078
Call trace:
panthor_gpuva_sm_step_remap+0xe4/0x330 [panthor]
op_remap_cb.isra.22+0x50/0x80
__drm_gpuvm_sm_unmap+0x10c/0x1c8
drm_gpuvm_sm_unmap+0x40/0x60
panthor_vm_exec_op+0xb4/0x3d0 [panthor]
panthor_vm_bind_exec_sync_op+0x154/0x278 [panthor]
panthor_ioctl_vm_bind+0x160/0x4a0 [panthor]
drm_ioctl_kernel+0xbc/0x138
drm_ioctl+0x240/0x500
__arm64_sys_ioctl+0xb0/0xf8
invoke_syscall+0x4c/0x110
el0_svc_common.constprop.1+0x98/0xf8
do_el0_svc+0x24/0x38
el0_svc+0x40/0xf8
el0t_64_sync_handler+0xa0/0xc8
el0t_64_sync+0x174/0x178 |
| In the Linux kernel, the following vulnerability has been resolved:
mm: prevent poison consumption when splitting THP
When performing memory error injection on a THP (Transparent Huge Page)
mapped to userspace on an x86 server, the kernel panics with the following
trace. The expected behavior is to terminate the affected process instead
of panicking the kernel, as the x86 Machine Check code can recover from an
in-userspace #MC.
mce: [Hardware Error]: CPU 0: Machine Check Exception: f Bank 3: bd80000000070134
mce: [Hardware Error]: RIP 10:<ffffffff8372f8bc> {memchr_inv+0x4c/0xf0}
mce: [Hardware Error]: TSC afff7bbff88a ADDR 1d301b000 MISC 80 PPIN 1e741e77539027db
mce: [Hardware Error]: PROCESSOR 0:d06d0 TIME 1758093249 SOCKET 0 APIC 0 microcode 80000320
mce: [Hardware Error]: Run the above through 'mcelog --ascii'
mce: [Hardware Error]: Machine check: Data load in unrecoverable area of kernel
Kernel panic - not syncing: Fatal local machine check
The root cause of this panic is that handling a memory failure triggered
by an in-userspace #MC necessitates splitting the THP. The splitting
process employs a mechanism, implemented in
try_to_map_unused_to_zeropage(), which reads the pages in the THP to
identify zero-filled pages. However, reading the pages in the THP results
in a second in-kernel #MC, occurring before the initial memory_failure()
completes, ultimately leading to a kernel panic. See the kernel panic
call trace on the two #MCs.
First Machine Check occurs // [1]
memory_failure() // [2]
try_to_split_thp_page()
split_huge_page()
split_huge_page_to_list_to_order()
__folio_split() // [3]
remap_page()
remove_migration_ptes()
remove_migration_pte()
try_to_map_unused_to_zeropage() // [4]
memchr_inv() // [5]
Second Machine Check occurs // [6]
Kernel panic
[1] Triggered by accessing a hardware-poisoned THP in userspace, which is
typically recoverable by terminating the affected process.
[2] Call folio_set_has_hwpoisoned() before try_to_split_thp_page().
[3] Pass the RMP_USE_SHARED_ZEROPAGE remap flag to remap_page().
[4] Try to map the unused THP to zeropage.
[5] Re-access pages in the hw-poisoned THP in the kernel.
[6] Triggered in-kernel, leading to a panic kernel.
In Step[2], memory_failure() sets the poisoned flag on the page in the THP
by TestSetPageHWPoison() before calling try_to_split_thp_page().
As suggested by David Hildenbrand, fix this panic by not accessing to the
poisoned page in the THP during zeropage identification, while continuing
to scan unaffected pages in the THP for possible zeropage mapping. This
prevents a second in-kernel #MC that would cause kernel panic in Step[4].
Thanks to Andrew Zaborowski for his initial work on fixing this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
net: phy: micrel: always set shared->phydev for LAN8814
Currently, during the LAN8814 PTP probe shared->phydev is only set if PTP
clock gets actually set, otherwise the function will return before setting
it.
This is an issue as shared->phydev is unconditionally being used when IRQ
is being handled, especially in lan8814_gpio_process_cap and since it was
not set it will cause a NULL pointer exception and crash the kernel.
So, simply always set shared->phydev to avoid the NULL pointer exception. |
| In the Linux kernel, the following vulnerability has been resolved:
sched_ext: Fix scx_enable() crash on helper kthread creation failure
A crash was observed when the sched_ext selftests runner was
terminated with Ctrl+\ while test 15 was running:
NIP [c00000000028fa58] scx_enable.constprop.0+0x358/0x12b0
LR [c00000000028fa2c] scx_enable.constprop.0+0x32c/0x12b0
Call Trace:
scx_enable.constprop.0+0x32c/0x12b0 (unreliable)
bpf_struct_ops_link_create+0x18c/0x22c
__sys_bpf+0x23f8/0x3044
sys_bpf+0x2c/0x6c
system_call_exception+0x124/0x320
system_call_vectored_common+0x15c/0x2ec
kthread_run_worker() returns an ERR_PTR() on failure rather than NULL,
but the current code in scx_alloc_and_add_sched() only checks for a NULL
helper. Incase of failure on SIGQUIT, the error is not handled in
scx_alloc_and_add_sched() and scx_enable() ends up dereferencing an
error pointer.
Error handling is fixed in scx_alloc_and_add_sched() to propagate
PTR_ERR() into ret, so that scx_enable() jumps to the existing error
path, avoiding random dereference on failure. |
| In the Linux kernel, the following vulnerability has been resolved:
PCI/IOV: Add PCI rescan-remove locking when enabling/disabling SR-IOV
Before disabling SR-IOV via config space accesses to the parent PF,
sriov_disable() first removes the PCI devices representing the VFs.
Since commit 9d16947b7583 ("PCI: Add global pci_lock_rescan_remove()")
such removal operations are serialized against concurrent remove and
rescan using the pci_rescan_remove_lock. No such locking was ever added
in sriov_disable() however. In particular when commit 18f9e9d150fc
("PCI/IOV: Factor out sriov_add_vfs()") factored out the PCI device
removal into sriov_del_vfs() there was still no locking around the
pci_iov_remove_virtfn() calls.
On s390 the lack of serialization in sriov_disable() may cause double
remove and list corruption with the below (amended) trace being observed:
PSW: 0704c00180000000 0000000c914e4b38 (klist_put+56)
GPRS: 000003800313fb48 0000000000000000 0000000100000001 0000000000000001
00000000f9b520a8 0000000000000000 0000000000002fbd 00000000f4cc9480
0000000000000001 0000000000000000 0000000000000000 0000000180692828
00000000818e8000 000003800313fe2c 000003800313fb20 000003800313fad8
#0 [3800313fb20] device_del at c9158ad5c
#1 [3800313fb88] pci_remove_bus_device at c915105ba
#2 [3800313fbd0] pci_iov_remove_virtfn at c9152f198
#3 [3800313fc28] zpci_iov_remove_virtfn at c90fb67c0
#4 [3800313fc60] zpci_bus_remove_device at c90fb6104
#5 [3800313fca0] __zpci_event_availability at c90fb3dca
#6 [3800313fd08] chsc_process_sei_nt0 at c918fe4a2
#7 [3800313fd60] crw_collect_info at c91905822
#8 [3800313fe10] kthread at c90feb390
#9 [3800313fe68] __ret_from_fork at c90f6aa64
#10 [3800313fe98] ret_from_fork at c9194f3f2.
This is because in addition to sriov_disable() removing the VFs, the
platform also generates hot-unplug events for the VFs. This being the
reverse operation to the hotplug events generated by sriov_enable() and
handled via pdev->no_vf_scan. And while the event processing takes
pci_rescan_remove_lock and checks whether the struct pci_dev still exists,
the lack of synchronization makes this checking racy.
Other races may also be possible of course though given that this lack of
locking persisted so long observable races seem very rare. Even on s390 the
list corruption was only observed with certain devices since the platform
events are only triggered by config accesses after the removal, so as long
as the removal finished synchronously they would not race. Either way the
locking is missing so fix this by adding it to the sriov_del_vfs() helper.
Just like PCI rescan-remove, locking is also missing in sriov_add_vfs()
including for the error case where pci_stop_and_remove_bus_device() is
called without the PCI rescan-remove lock being held. Even in the non-error
case, adding new PCI devices and buses should be serialized via the PCI
rescan-remove lock. Add the necessary locking. |