| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ip6_tunnel: use skb_vlan_inet_prepare() in __ip6_tnl_rcv()
Blamed commit did not take care of VLAN encapsulations
as spotted by syzbot [1].
Use skb_vlan_inet_prepare() instead of pskb_inet_may_pull().
[1]
BUG: KMSAN: uninit-value in __INET_ECN_decapsulate include/net/inet_ecn.h:253 [inline]
BUG: KMSAN: uninit-value in INET_ECN_decapsulate include/net/inet_ecn.h:275 [inline]
BUG: KMSAN: uninit-value in IP6_ECN_decapsulate+0x7a8/0x1fa0 include/net/inet_ecn.h:321
__INET_ECN_decapsulate include/net/inet_ecn.h:253 [inline]
INET_ECN_decapsulate include/net/inet_ecn.h:275 [inline]
IP6_ECN_decapsulate+0x7a8/0x1fa0 include/net/inet_ecn.h:321
ip6ip6_dscp_ecn_decapsulate+0x16f/0x1b0 net/ipv6/ip6_tunnel.c:729
__ip6_tnl_rcv+0xed9/0x1b50 net/ipv6/ip6_tunnel.c:860
ip6_tnl_rcv+0xc3/0x100 net/ipv6/ip6_tunnel.c:903
gre_rcv+0x1529/0x1b90 net/ipv6/ip6_gre.c:-1
ip6_protocol_deliver_rcu+0x1c89/0x2c60 net/ipv6/ip6_input.c:438
ip6_input_finish+0x1f4/0x4a0 net/ipv6/ip6_input.c:489
NF_HOOK include/linux/netfilter.h:318 [inline]
ip6_input+0x9c/0x330 net/ipv6/ip6_input.c:500
ip6_mc_input+0x7ca/0xc10 net/ipv6/ip6_input.c:590
dst_input include/net/dst.h:474 [inline]
ip6_rcv_finish+0x958/0x990 net/ipv6/ip6_input.c:79
NF_HOOK include/linux/netfilter.h:318 [inline]
ipv6_rcv+0xf1/0x3c0 net/ipv6/ip6_input.c:311
__netif_receive_skb_one_core net/core/dev.c:6139 [inline]
__netif_receive_skb+0x1df/0xac0 net/core/dev.c:6252
netif_receive_skb_internal net/core/dev.c:6338 [inline]
netif_receive_skb+0x57/0x630 net/core/dev.c:6397
tun_rx_batched+0x1df/0x980 drivers/net/tun.c:1485
tun_get_user+0x5c0e/0x6c60 drivers/net/tun.c:1953
tun_chr_write_iter+0x3e9/0x5c0 drivers/net/tun.c:1999
new_sync_write fs/read_write.c:593 [inline]
vfs_write+0xbe2/0x15d0 fs/read_write.c:686
ksys_write fs/read_write.c:738 [inline]
__do_sys_write fs/read_write.c:749 [inline]
__se_sys_write fs/read_write.c:746 [inline]
__x64_sys_write+0x1fb/0x4d0 fs/read_write.c:746
x64_sys_call+0x30ab/0x3e70 arch/x86/include/generated/asm/syscalls_64.h:2
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xd3/0xf80 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Uninit was created at:
slab_post_alloc_hook mm/slub.c:4960 [inline]
slab_alloc_node mm/slub.c:5263 [inline]
kmem_cache_alloc_node_noprof+0x9e7/0x17a0 mm/slub.c:5315
kmalloc_reserve+0x13c/0x4b0 net/core/skbuff.c:586
__alloc_skb+0x805/0x1040 net/core/skbuff.c:690
alloc_skb include/linux/skbuff.h:1383 [inline]
alloc_skb_with_frags+0xc5/0xa60 net/core/skbuff.c:6712
sock_alloc_send_pskb+0xacc/0xc60 net/core/sock.c:2995
tun_alloc_skb drivers/net/tun.c:1461 [inline]
tun_get_user+0x1142/0x6c60 drivers/net/tun.c:1794
tun_chr_write_iter+0x3e9/0x5c0 drivers/net/tun.c:1999
new_sync_write fs/read_write.c:593 [inline]
vfs_write+0xbe2/0x15d0 fs/read_write.c:686
ksys_write fs/read_write.c:738 [inline]
__do_sys_write fs/read_write.c:749 [inline]
__se_sys_write fs/read_write.c:746 [inline]
__x64_sys_write+0x1fb/0x4d0 fs/read_write.c:746
x64_sys_call+0x30ab/0x3e70 arch/x86/include/generated/asm/syscalls_64.h:2
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xd3/0xf80 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
CPU: 0 UID: 0 PID: 6465 Comm: syz.0.17 Not tainted syzkaller #0 PREEMPT(none)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/25/2025 |
| In the Linux kernel, the following vulnerability has been resolved:
macvlan: fix possible UAF in macvlan_forward_source()
Add RCU protection on (struct macvlan_source_entry)->vlan.
Whenever macvlan_hash_del_source() is called, we must clear
entry->vlan pointer before RCU grace period starts.
This allows macvlan_forward_source() to skip over
entries queued for freeing.
Note that macvlan_dev are already RCU protected, as they
are embedded in a standard netdev (netdev_priv(ndev)).
https: //lore.kernel.org/netdev/695fb1e8.050a0220.1c677c.039f.GAE@google.com/T/#u |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: sch_qfq: do not free existing class in qfq_change_class()
Fixes qfq_change_class() error case.
cl->qdisc and cl should only be freed if a new class and qdisc
were allocated, or we risk various UAF. |
| In the Linux kernel, the following vulnerability has been resolved:
nvme-tcp: fix NULL pointer dereferences in nvmet_tcp_build_pdu_iovec
Commit efa56305908b ("nvmet-tcp: Fix a kernel panic when host sends an invalid H2C PDU length")
added ttag bounds checking and data_offset
validation in nvmet_tcp_handle_h2c_data_pdu(), but it did not validate
whether the command's data structures (cmd->req.sg and cmd->iov) have
been properly initialized before processing H2C_DATA PDUs.
The nvmet_tcp_build_pdu_iovec() function dereferences these pointers
without NULL checks. This can be triggered by sending H2C_DATA PDU
immediately after the ICREQ/ICRESP handshake, before
sending a CONNECT command or NVMe write command.
Attack vectors that trigger NULL pointer dereferences:
1. H2C_DATA PDU sent before CONNECT → both pointers NULL
2. H2C_DATA PDU for READ command → cmd->req.sg allocated, cmd->iov NULL
3. H2C_DATA PDU for uninitialized command slot → both pointers NULL
The fix validates both cmd->req.sg and cmd->iov before calling
nvmet_tcp_build_pdu_iovec(). Both checks are required because:
- Uninitialized commands: both NULL
- READ commands: cmd->req.sg allocated, cmd->iov NULL
- WRITE commands: both allocated |
| In the Linux kernel, the following vulnerability has been resolved:
net: can: j1939: j1939_xtp_rx_rts_session_active(): deactivate session upon receiving the second rts
Since j1939_session_deactivate_activate_next() in j1939_tp_rxtimer() is
called only when the timer is enabled, we need to call
j1939_session_deactivate_activate_next() if we cancelled the timer.
Otherwise, refcount for j1939_session leaks, which will later appear as
| unregister_netdevice: waiting for vcan0 to become free. Usage count = 2.
problem. |
| In the Linux kernel, the following vulnerability has been resolved:
iio: adc: at91-sama5d2_adc: Fix potential use-after-free in sama5d2_adc driver
at91_adc_interrupt can call at91_adc_touch_data_handler function
to start the work by schedule_work(&st->touch_st.workq).
If we remove the module which will call at91_adc_remove to
make cleanup, it will free indio_dev through iio_device_unregister but
quite a bit later. While the work mentioned above will be used. The
sequence of operations that may lead to a UAF bug is as follows:
CPU0 CPU1
| at91_adc_workq_handler
at91_adc_remove |
iio_device_unregister(indio_dev) |
//free indio_dev a bit later |
| iio_push_to_buffers(indio_dev)
| //use indio_dev
Fix it by ensuring that the work is canceled before proceeding with
the cleanup in at91_adc_remove. |
| In the Linux kernel, the following vulnerability has been resolved:
w1: therm: Fix off-by-one buffer overflow in alarms_store
The sysfs buffer passed to alarms_store() is allocated with 'size + 1'
bytes and a NUL terminator is appended. However, the 'size' argument
does not account for this extra byte. The original code then allocated
'size' bytes and used strcpy() to copy 'buf', which always writes one
byte past the allocated buffer since strcpy() copies until the NUL
terminator at index 'size'.
Fix this by parsing the 'buf' parameter directly using simple_strtoll()
without allocating any intermediate memory or string copying. This
removes the overflow while simplifying the code. |
| In the Linux kernel, the following vulnerability has been resolved:
phy: stm32-usphyc: Fix off by one in probe()
The "index" variable is used as an index into the usbphyc->phys[] array
which has usbphyc->nphys elements. So if it is equal to usbphyc->nphys
then it is one element out of bounds. The "index" comes from the
device tree so it's data that we trust and it's unlikely to be wrong,
however it's obviously still worth fixing the bug. Change the > to >=. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix deadlock in wait_current_trans() due to ignored transaction type
When wait_current_trans() is called during start_transaction(), it
currently waits for a blocked transaction without considering whether
the given transaction type actually needs to wait for that particular
transaction state. The btrfs_blocked_trans_types[] array already defines
which transaction types should wait for which transaction states, but
this check was missing in wait_current_trans().
This can lead to a deadlock scenario involving two transactions and
pending ordered extents:
1. Transaction A is in TRANS_STATE_COMMIT_DOING state
2. A worker processing an ordered extent calls start_transaction()
with TRANS_JOIN
3. join_transaction() returns -EBUSY because Transaction A is in
TRANS_STATE_COMMIT_DOING
4. Transaction A moves to TRANS_STATE_UNBLOCKED and completes
5. A new Transaction B is created (TRANS_STATE_RUNNING)
6. The ordered extent from step 2 is added to Transaction B's
pending ordered extents
7. Transaction B immediately starts commit by another task and
enters TRANS_STATE_COMMIT_START
8. The worker finally reaches wait_current_trans(), sees Transaction B
in TRANS_STATE_COMMIT_START (a blocked state), and waits
unconditionally
9. However, TRANS_JOIN should NOT wait for TRANS_STATE_COMMIT_START
according to btrfs_blocked_trans_types[]
10. Transaction B is waiting for pending ordered extents to complete
11. Deadlock: Transaction B waits for ordered extent, ordered extent
waits for Transaction B
This can be illustrated by the following call stacks:
CPU0 CPU1
btrfs_finish_ordered_io()
start_transaction(TRANS_JOIN)
join_transaction()
# -EBUSY (Transaction A is
# TRANS_STATE_COMMIT_DOING)
# Transaction A completes
# Transaction B created
# ordered extent added to
# Transaction B's pending list
btrfs_commit_transaction()
# Transaction B enters
# TRANS_STATE_COMMIT_START
# waiting for pending ordered
# extents
wait_current_trans()
# waits for Transaction B
# (should not wait!)
Task bstore_kv_sync in btrfs_commit_transaction waiting for ordered
extents:
__schedule+0x2e7/0x8a0
schedule+0x64/0xe0
btrfs_commit_transaction+0xbf7/0xda0 [btrfs]
btrfs_sync_file+0x342/0x4d0 [btrfs]
__x64_sys_fdatasync+0x4b/0x80
do_syscall_64+0x33/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Task kworker in wait_current_trans waiting for transaction commit:
Workqueue: btrfs-syno_nocow btrfs_work_helper [btrfs]
__schedule+0x2e7/0x8a0
schedule+0x64/0xe0
wait_current_trans+0xb0/0x110 [btrfs]
start_transaction+0x346/0x5b0 [btrfs]
btrfs_finish_ordered_io.isra.0+0x49b/0x9c0 [btrfs]
btrfs_work_helper+0xe8/0x350 [btrfs]
process_one_work+0x1d3/0x3c0
worker_thread+0x4d/0x3e0
kthread+0x12d/0x150
ret_from_fork+0x1f/0x30
Fix this by passing the transaction type to wait_current_trans() and
checking btrfs_blocked_trans_types[cur_trans->state] against the given
type before deciding to wait. This ensures that transaction types which
are allowed to join during certain blocked states will not unnecessarily
wait and cause deadlocks. |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: at_hdmac: fix device leak on of_dma_xlate()
Make sure to drop the reference taken when looking up the DMA platform
device during of_dma_xlate() when releasing channel resources.
Note that commit 3832b78b3ec2 ("dmaengine: at_hdmac: add missing
put_device() call in at_dma_xlate()") fixed the leak in a couple of
error paths but the reference is still leaking on successful allocation. |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: bcm-sba-raid: fix device leak on probe
Make sure to drop the reference taken when looking up the mailbox device
during probe on probe failures and on driver unbind. |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: dw: dmamux: fix OF node leak on route allocation failure
Make sure to drop the reference taken to the DMA master OF node also on
late route allocation failures. |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: lpc18xx-dmamux: fix device leak on route allocation
Make sure to drop the reference taken when looking up the DMA mux
platform device during route allocation.
Note that holding a reference to a device does not prevent its driver
data from going away so there is no point in keeping the reference. |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: stm32: dmamux: fix device leak on route allocation
Make sure to drop the reference taken when looking up the DMA mux
platform device during route allocation.
Note that holding a reference to a device does not prevent its driver
data from going away so there is no point in keeping the reference. |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: ti: dma-crossbar: fix device leak on am335x route allocation
Make sure to drop the reference taken when looking up the crossbar
platform device during am335x route allocation. |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: idxd: fix device leaks on compat bind and unbind
Make sure to drop the reference taken when looking up the idxd device as
part of the compat bind and unbind sysfs interface. |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: tegra-adma: Fix use-after-free
A use-after-free bug exists in the Tegra ADMA driver when audio streams
are terminated, particularly during XRUN conditions. The issue occurs
when the DMA buffer is freed by tegra_adma_terminate_all() before the
vchan completion tasklet finishes accessing it.
The race condition follows this sequence:
1. DMA transfer completes, triggering an interrupt that schedules the
completion tasklet (tasklet has not executed yet)
2. Audio playback stops, calling tegra_adma_terminate_all() which
frees the DMA buffer memory via kfree()
3. The scheduled tasklet finally executes, calling vchan_complete()
which attempts to access the already-freed memory
Since tasklets can execute at any time after being scheduled, there is
no guarantee that the buffer will remain valid when vchan_complete()
runs.
Fix this by properly synchronizing the virtual channel completion:
- Calling vchan_terminate_vdesc() in tegra_adma_stop() to mark the
descriptors as terminated instead of freeing the descriptor.
- Add the callback tegra_adma_synchronize() that calls
vchan_synchronize() which kills any pending tasklets and frees any
terminated descriptors.
Crash logs:
[ 337.427523] BUG: KASAN: use-after-free in vchan_complete+0x124/0x3b0
[ 337.427544] Read of size 8 at addr ffff000132055428 by task swapper/0/0
[ 337.427562] Call trace:
[ 337.427564] dump_backtrace+0x0/0x320
[ 337.427571] show_stack+0x20/0x30
[ 337.427575] dump_stack_lvl+0x68/0x84
[ 337.427584] print_address_description.constprop.0+0x74/0x2b8
[ 337.427590] kasan_report+0x1f4/0x210
[ 337.427598] __asan_load8+0xa0/0xd0
[ 337.427603] vchan_complete+0x124/0x3b0
[ 337.427609] tasklet_action_common.constprop.0+0x190/0x1d0
[ 337.427617] tasklet_action+0x30/0x40
[ 337.427623] __do_softirq+0x1a0/0x5c4
[ 337.427628] irq_exit+0x110/0x140
[ 337.427633] handle_domain_irq+0xa4/0xe0
[ 337.427640] gic_handle_irq+0x64/0x160
[ 337.427644] call_on_irq_stack+0x20/0x4c
[ 337.427649] do_interrupt_handler+0x7c/0x90
[ 337.427654] el1_interrupt+0x30/0x80
[ 337.427659] el1h_64_irq_handler+0x18/0x30
[ 337.427663] el1h_64_irq+0x7c/0x80
[ 337.427667] cpuidle_enter_state+0xe4/0x540
[ 337.427674] cpuidle_enter+0x54/0x80
[ 337.427679] do_idle+0x2e0/0x380
[ 337.427685] cpu_startup_entry+0x2c/0x70
[ 337.427690] rest_init+0x114/0x130
[ 337.427695] arch_call_rest_init+0x18/0x24
[ 337.427702] start_kernel+0x380/0x3b4
[ 337.427706] __primary_switched+0xc0/0xc8 |
| An issue in ChestnutCMS v.1.5.8 and before allows a remote attacker to execute arbitrary code via the template creation function |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix use-after-free in ksmbd_tree_connect_put under concurrency
Under high concurrency, A tree-connection object (tcon) is freed on
a disconnect path while another path still holds a reference and later
executes *_put()/write on it. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Do not let BPF test infra emit invalid GSO types to stack
Yinhao et al. reported that their fuzzer tool was able to trigger a
skb_warn_bad_offload() from netif_skb_features() -> gso_features_check().
When a BPF program - triggered via BPF test infra - pushes the packet
to the loopback device via bpf_clone_redirect() then mentioned offload
warning can be seen. GSO-related features are then rightfully disabled.
We get into this situation due to convert___skb_to_skb() setting
gso_segs and gso_size but not gso_type. Technically, it makes sense
that this warning triggers since the GSO properties are malformed due
to the gso_type. Potentially, the gso_type could be marked non-trustworthy
through setting it at least to SKB_GSO_DODGY without any other specific
assumptions, but that also feels wrong given we should not go further
into the GSO engine in the first place.
The checks were added in 121d57af308d ("gso: validate gso_type in GSO
handlers") because there were malicious (syzbot) senders that combine
a protocol with a non-matching gso_type. If we would want to drop such
packets, gso_features_check() currently only returns feature flags via
netif_skb_features(), so one location for potentially dropping such skbs
could be validate_xmit_unreadable_skb(), but then otoh it would be
an additional check in the fast-path for a very corner case. Given
bpf_clone_redirect() is the only place where BPF test infra could emit
such packets, lets reject them right there. |