| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Integer overflow in the wrestool program in icoutils before 0.31.1 allows remote attackers to cause a denial of service (memory corruption) via a crafted executable, which triggers a denial of service (application crash) or the possibility of execution of arbitrary code. |
| Integer truncation issue in coders/pict.c in ImageMagick before 7.0.5-0 allows remote attackers to cause a denial of service (application crash) via a crafted .pict file. |
| A non-privileged user is able to mount a fuse filesystem on RHEL 6 or 7 and crash a system if an application punches a hole in a file that does not end aligned to a page boundary. |
| The ResourceLinkFactory implementation in Apache Tomcat 9.0.0.M1 to 9.0.0.M9, 8.5.0 to 8.5.4, 8.0.0.RC1 to 8.0.36, 7.0.0 to 7.0.70 and 6.0.0 to 6.0.45 did not limit web application access to global JNDI resources to those resources explicitly linked to the web application. Therefore, it was possible for a web application to access any global JNDI resource whether an explicit ResourceLink had been configured or not. |
| named in ISC BIND 9.x before 9.9.9-P5, 9.10.x before 9.10.4-P5, and 9.11.x before 9.11.0-P2 allows remote attackers to cause a denial of service (assertion failure and daemon exit) via a malformed response to an RTYPE ANY query. |
| SELinux policycoreutils allows local users to execute arbitrary commands outside of the sandbox via a crafted TIOCSTI ioctl call. |
| Vulnerability in the Java SE, Java SE Embedded component of Oracle Java SE (subcomponent: Hotspot). Supported versions that are affected are Java SE: 6u151, 7u141 and 8u131; Java SE Embedded: 8u131. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks require human interaction from a person other than the attacker and while the vulnerability is in Java SE, Java SE Embedded, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in takeover of Java SE, Java SE Embedded. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.0 Base Score 8.3 (Confidentiality, Integrity and Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:R/S:C/C:H/I:H/A:H). |
| Vulnerability in the Java SE, Java SE Embedded component of Oracle Java SE (subcomponent: Libraries). Supported versions that are affected are Java SE: 7u141 and 8u131; Java SE Embedded: 8u131. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks require human interaction from a person other than the attacker and while the vulnerability is in Java SE, Java SE Embedded, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in takeover of Java SE, Java SE Embedded. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.0 Base Score 9.6 (Confidentiality, Integrity and Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:C/C:H/I:H/A:H). |
| RubyGems version 2.6.12 and earlier is vulnerable to a DNS hijacking vulnerability that allows a MITM attacker to force the RubyGems client to download and install gems from a server that the attacker controls. |
| Vulnerability in the Java SE component of Oracle Java SE (subcomponent: Smart Card IO). Supported versions that are affected are Java SE: 6u161, 7u151, 8u144 and 9. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE. Successful attacks require human interaction from a person other than the attacker. Successful attacks of this vulnerability can result in unauthorized creation, deletion or modification access to critical data or all Java SE accessible data as well as unauthorized access to critical data or complete access to all Java SE accessible data. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.0 Base Score 6.8 (Confidentiality and Integrity impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:R/S:U/C:H/I:H/A:N). |
| Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: Security). Supported versions that are affected are Java SE: 6u151, 7u141 and 8u131; Java SE Embedded: 8u131; JRockit: R28.3.14. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. While the vulnerability is in Java SE, Java SE Embedded, JRockit, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Java SE, Java SE Embedded, JRockit accessible data. Note: This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 6.8 (Confidentiality impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:C/C:H/I:N/A:N). |
| The ntpd client in NTP 4.x before 4.2.8p4 and 4.3.x before 4.3.77 allows remote attackers to cause a denial of service via a number of crafted "KOD" messages. |
| Vulnerability in the Java SE, Java SE Embedded component of Oracle Java SE (subcomponent: Security). Supported versions that are affected are Java SE: 6u151, 7u141 and 8u131; Java SE Embedded: 8u131. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks require human interaction from a person other than the attacker. Successful attacks of this vulnerability can result in unauthorized read access to a subset of Java SE, Java SE Embedded accessible data. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.0 Base Score 3.1 (Confidentiality impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:H/PR:N/UI:R/S:U/C:L/I:N/A:N). |
| Vulnerability in the Java SE, Java SE Embedded component of Oracle Java SE (subcomponent: Libraries). Supported versions that are affected are Java SE: 6u151, 7u141 and 8u131; Java SE Embedded: 8u131. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks require human interaction from a person other than the attacker and while the vulnerability is in Java SE, Java SE Embedded, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in takeover of Java SE, Java SE Embedded. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.0 Base Score 9.6 (Confidentiality, Integrity and Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:C/C:H/I:H/A:H). |
| In Mercurial before 4.1.3, "hg serve --stdio" allows remote authenticated users to launch the Python debugger, and consequently execute arbitrary code, by using --debugger as a repository name. |
| Tor Browser before 7.0.9 on macOS and Linux allows remote attackers to bypass the intended anonymity feature and discover a client IP address via vectors involving a crafted web site that leverages file:// mishandling in Firefox, aka TorMoil. NOTE: Tails is unaffected. |
| sosreport in SoS 3.x allows local users to obtain sensitive information from sosreport files or gain privileges via a symlink attack on an archive file in a temporary directory, as demonstrated by sosreport-$hostname-$date.tar in /tmp/sosreport-$hostname-$date. |
| An issue was discovered in icoutils 0.31.1. A buffer overflow was observed in the "extract_icons" function in the "extract.c" source file. This issue can be triggered by processing a corrupted ico file and will result in an icotool crash. |
| RubyGems version 2.6.12 and earlier is vulnerable to maliciously crafted gem specifications that include terminal escape characters. Printing the gem specification would execute terminal escape sequences. |
| Apache HTTP Server, in all releases prior to 2.2.32 and 2.4.25, was liberal in the whitespace accepted from requests and sent in response lines and headers. Accepting these different behaviors represented a security concern when httpd participates in any chain of proxies or interacts with back-end application servers, either through mod_proxy or using conventional CGI mechanisms, and may result in request smuggling, response splitting and cache pollution. |