| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Missing protection mechanism for alternate hardware interface in the Intel(R) Quick Assist Technology for some Intel(R) Platforms within Ring 0: Kernel may allow an escalation of privilege. System software adversary with a privileged user combined with a low complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are present with special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (none) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Improper system call parameter validation in the Trusted OS may allow a malicious driver to perform mapping or unmapping operations on a large number of pages, potentially resulting in kernel memory corruption. |
| Improper handling of error condition during host-induced faults can allow a local high-privileged attack to selectively drop guest DMA writes, potentially resulting in a loss of SEV-SNP guest memory integrity |
| A use after free in the SEV firmware could allow a malicous hypervisor to activate a migrated guest with the SINGLE_SOCKET policy on a different socket than the migration agent potentially resulting in loss of integrity. |
| The ZOLL ePCR IOS application reflects unsanitized user input into a WebView. Attacker-controlled strings placed into PCR fields (run number, incident, call sign, notes) are interpreted as HTML/JS when the app prints or renders that content. In the proof of concept (POC), injected scripts return local file content, which would allow arbitrary local file reads from the app's runtime context. These local files contain device and user data within the ePCR medical application, and if exposed, would allow an attacker to access protected health information (PHI) or device telemetry. |
| A Time-of-check time-of-use (TOCTOU) race condition in the SMM communications buffer could allow a privileged attacker to bypass input validation and perform an out of bounds read or write, potentially resulting in loss of confidentiality, integrity, or availability. |
| Improper conditions check for the Intel(R) Optane(TM) PMem management software before versions CR_MGMT_02.00.00.4052, CR_MGMT_03.00.00.0538 within Ring 3: User Applications may allow an escalation of privilege. Unprivileged software adversary with an authenticated user combined with a high complexity attack may enable [cvss_threat_loss_factor]. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires active user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Null pointer dereference in the firmware for some Intel(R) AMT and Intel(R) Standard Manageability within Ring 0: Kernel may allow a denial of service. Network adversary with an unauthenticated user combined with a high complexity attack may enable denial of service. This result may potentially occur via network access when attack requirements are present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Uncontrolled search path in some software installer for some VTune(TM) Profiler software and Intel(R) oneAPI Base Toolkits before version 2025.0. within Ring 3: User Applications may allow an escalation of privilege. System software adversary with an authenticated user combined with a high complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires active user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Improper initialization for some ESXi kernel mode driver for the Intel(R) Ethernet 800-Series before version 2.2.2.0 (esxi 8.0) & 2.2.3.0 (esxi 9.0) within Ring 1: Device Drivers may allow an information disclosure. Unprivileged software adversary with an authenticated user combined with a low complexity attack may enable data exposure. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (low), integrity (none) and availability (none) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Improper input validation for some Server Firmware Update Utility(SysFwUpdt) before version 16.0.12 within Ring 3: User Applications may allow an escalation of privilege. System software adversary with a privileged user combined with a low complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Out-of-bounds write in the firmware for some Intel(R) Ethernet Controller E810 before version cvl fw 1.7.8.x within Ring 0: Bare Metal OS may allow a denial of service. System software adversary with a privileged user combined with a low complexity attack may enable denial of service. This result may potentially occur via local access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Loop with unreachable exit condition ('infinite loop') for some Intel(R) Platform within Ring 0: Kernel may allow a denial of service. System software adversary with a privileged user combined with a low complexity attack may enable denial of service. This result may potentially occur via local access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Exposure of sensitive information during transient execution for some TDX within Ring 0: Hypervisor may allow an information disclosure. Authorized adversary with a privileged user combined with a high complexity attack may enable data exposure. This result may potentially occur via local access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (high), integrity (none) and availability (none) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Out-of-bounds read in the firmware for some Intel(R) Converged Security and Management Engine (CSME) Firmware (FW) within Ring 0: Kernel may allow an information disclosure. System software adversary with a privileged user combined with a low complexity attack may enable data exposure. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (high), integrity (none) and availability (none) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Out-of-bounds read for some TDX Module before version tdx1.5 within Ring 0: Hypervisor may allow an information disclosure. Software side channel adversary with a privileged user combined with a high complexity attack may enable data exposure. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (high), integrity (none) and availability (none) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| Improper access control in secure encrypted virtualization (SEV) could allow a privileged attacker to write to the reverse map page (RMP) during secure nested paging (SNP) initialization, potentially resulting in a loss of guest memory confidentiality and integrity. |
| Improper access control in AMD Secure Encrypted Virtualization (SEV) firmware could allow a malicious hypervisor to bypass RMP protections, potentially resulting in a loss of SEV-SNP guest memory integrity. |
| Insufficient input parameter sanitization in AMD Secure Processor (ASP) Boot Loader (legacy recovery mode only) could allow an attacker to write out-of-bounds to corrupt Secure DRAM potentially resulting in denial of service. |
| Improper authorization in the Intel(R) Quick Assist Technology for some Intel(R) Platforms within Ring 0: Kernel may allow a denial of service. Unprivileged software adversary with an authenticated user combined with a low complexity attack may enable denial of service. This result may potentially occur via local access when attack requirements are not present with special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |