| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Vulnerability in the Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Hotspot). Supported versions that are affected are Oracle Java SE: 8u391, 8u391-perf, 11.0.21, 17.0.9, 21.0.1; Oracle GraalVM for JDK: 17.0.9, 21.0.1; Oracle GraalVM Enterprise Edition: 20.3.12, 21.3.8 and 22.3.4. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized creation, deletion or modification access to critical data or all Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition accessible data. Note: This vulnerability can only be exploited by supplying data to APIs in the specified Component without using Untrusted Java Web Start applications or Untrusted Java applets, such as through a web service. CVSS 3.1 Base Score 5.9 (Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:H/A:N). |
| NSS was susceptible to a timing side-channel attack when performing RSA decryption. This attack could potentially allow an attacker to recover the private data. This vulnerability affects Firefox < 124, Firefox ESR < 115.9, and Thunderbird < 115.9. |
| The Closest Encloser Proof aspect of the DNS protocol (in RFC 5155 when RFC 9276 guidance is skipped) allows remote attackers to cause a denial of service (CPU consumption for SHA-1 computations) via DNSSEC responses in a random subdomain attack, aka the "NSEC3" issue. The RFC 5155 specification implies that an algorithm must perform thousands of iterations of a hash function in certain situations. |
| Certain DNSSEC aspects of the DNS protocol (in RFC 4033, 4034, 4035, 6840, and related RFCs) allow remote attackers to cause a denial of service (CPU consumption) via one or more DNSSEC responses, aka the "KeyTrap" issue. One of the concerns is that, when there is a zone with many DNSKEY and RRSIG records, the protocol specification implies that an algorithm must evaluate all combinations of DNSKEY and RRSIG records. |
| An attacker may cause an HTTP/2 endpoint to read arbitrary amounts of header data by sending an excessive number of CONTINUATION frames. Maintaining HPACK state requires parsing and processing all HEADERS and CONTINUATION frames on a connection. When a request's headers exceed MaxHeaderBytes, no memory is allocated to store the excess headers, but they are still parsed. This permits an attacker to cause an HTTP/2 endpoint to read arbitrary amounts of header data, all associated with a request which is going to be rejected. These headers can include Huffman-encoded data which is significantly more expensive for the receiver to decode than for an attacker to send. The fix sets a limit on the amount of excess header frames we will process before closing a connection. |
| EDK2's Network Package is susceptible to a buffer overflow vulnerability when
handling Server ID option
from a DHCPv6 proxy Advertise message. This
vulnerability can be exploited by an attacker to gain unauthorized
access and potentially lead to a loss of Confidentiality, Integrity and/or Availability. |
| EDK2's Network Package is susceptible to a buffer overflow vulnerability when processing DNS Servers option from a DHCPv6 Advertise message. This
vulnerability can be exploited by an attacker to gain unauthorized
access and potentially lead to a loss of Confidentiality, Integrity and/or Availability. |
| EDK2's Network Package is susceptible to a buffer overflow vulnerability via a long server ID option in DHCPv6 client. This
vulnerability can be exploited by an attacker to gain unauthorized
access and potentially lead to a loss of Confidentiality, Integrity and/or Availability. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: ignore xattrs past end
Once inside 'ext4_xattr_inode_dec_ref_all' we should
ignore xattrs entries past the 'end' entry.
This fixes the following KASAN reported issue:
==================================================================
BUG: KASAN: slab-use-after-free in ext4_xattr_inode_dec_ref_all+0xb8c/0xe90
Read of size 4 at addr ffff888012c120c4 by task repro/2065
CPU: 1 UID: 0 PID: 2065 Comm: repro Not tainted 6.13.0-rc2+ #11
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x1fd/0x300
? tcp_gro_dev_warn+0x260/0x260
? _printk+0xc0/0x100
? read_lock_is_recursive+0x10/0x10
? irq_work_queue+0x72/0xf0
? __virt_addr_valid+0x17b/0x4b0
print_address_description+0x78/0x390
print_report+0x107/0x1f0
? __virt_addr_valid+0x17b/0x4b0
? __virt_addr_valid+0x3ff/0x4b0
? __phys_addr+0xb5/0x160
? ext4_xattr_inode_dec_ref_all+0xb8c/0xe90
kasan_report+0xcc/0x100
? ext4_xattr_inode_dec_ref_all+0xb8c/0xe90
ext4_xattr_inode_dec_ref_all+0xb8c/0xe90
? ext4_xattr_delete_inode+0xd30/0xd30
? __ext4_journal_ensure_credits+0x5f0/0x5f0
? __ext4_journal_ensure_credits+0x2b/0x5f0
? inode_update_timestamps+0x410/0x410
ext4_xattr_delete_inode+0xb64/0xd30
? ext4_truncate+0xb70/0xdc0
? ext4_expand_extra_isize_ea+0x1d20/0x1d20
? __ext4_mark_inode_dirty+0x670/0x670
? ext4_journal_check_start+0x16f/0x240
? ext4_inode_is_fast_symlink+0x2f2/0x3a0
ext4_evict_inode+0xc8c/0xff0
? ext4_inode_is_fast_symlink+0x3a0/0x3a0
? do_raw_spin_unlock+0x53/0x8a0
? ext4_inode_is_fast_symlink+0x3a0/0x3a0
evict+0x4ac/0x950
? proc_nr_inodes+0x310/0x310
? trace_ext4_drop_inode+0xa2/0x220
? _raw_spin_unlock+0x1a/0x30
? iput+0x4cb/0x7e0
do_unlinkat+0x495/0x7c0
? try_break_deleg+0x120/0x120
? 0xffffffff81000000
? __check_object_size+0x15a/0x210
? strncpy_from_user+0x13e/0x250
? getname_flags+0x1dc/0x530
__x64_sys_unlinkat+0xc8/0xf0
do_syscall_64+0x65/0x110
entry_SYSCALL_64_after_hwframe+0x67/0x6f
RIP: 0033:0x434ffd
Code: 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 00 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 8
RSP: 002b:00007ffc50fa7b28 EFLAGS: 00000246 ORIG_RAX: 0000000000000107
RAX: ffffffffffffffda RBX: 00007ffc50fa7e18 RCX: 0000000000434ffd
RDX: 0000000000000000 RSI: 0000000020000240 RDI: 0000000000000005
RBP: 00007ffc50fa7be0 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000001
R13: 00007ffc50fa7e08 R14: 00000000004bbf30 R15: 0000000000000001
</TASK>
The buggy address belongs to the object at ffff888012c12000
which belongs to the cache filp of size 360
The buggy address is located 196 bytes inside of
freed 360-byte region [ffff888012c12000, ffff888012c12168)
The buggy address belongs to the physical page:
page: refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x12c12
head: order:1 mapcount:0 entire_mapcount:0 nr_pages_mapped:0 pincount:0
flags: 0x40(head|node=0|zone=0)
page_type: f5(slab)
raw: 0000000000000040 ffff888000ad7640 ffffea0000497a00 dead000000000004
raw: 0000000000000000 0000000000100010 00000001f5000000 0000000000000000
head: 0000000000000040 ffff888000ad7640 ffffea0000497a00 dead000000000004
head: 0000000000000000 0000000000100010 00000001f5000000 0000000000000000
head: 0000000000000001 ffffea00004b0481 ffffffffffffffff 0000000000000000
head: 0000000000000002 0000000000000000 00000000ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff888012c11f80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ffff888012c12000: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
> ffff888012c12080: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
ffff888012c12100: fb fb fb fb fb fb fb fb fb fb fb fb fb fc fc fc
ffff888012c12180: fc fc fc fc fc fc fc fc fc
---truncated--- |
| Use after free in ANGLE in Google Chrome prior to 124.0.6367.155 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: High) |
| An out-of-bounds access issue was addressed with improved bounds checking. This issue is fixed in iOS 16.7.9 and iPadOS 16.7.9, Safari 17.6, iOS 17.6 and iPadOS 17.6, watchOS 10.6, tvOS 17.6, visionOS 1.3, macOS Sonoma 14.6. Processing maliciously crafted web content may lead to an unexpected process crash. |
| A use-after-free issue was addressed with improved memory management. This issue is fixed in iOS 16.7.9 and iPadOS 16.7.9, Safari 17.6, iOS 17.6 and iPadOS 17.6, watchOS 10.6, tvOS 17.6, visionOS 1.3, macOS Sonoma 14.6. Processing maliciously crafted web content may lead to an unexpected process crash. |
| An out-of-bounds read was addressed with improved bounds checking. This issue is fixed in iOS 16.7.9 and iPadOS 16.7.9, Safari 17.6, iOS 17.6 and iPadOS 17.6, watchOS 10.6, tvOS 17.6, visionOS 1.3, macOS Sonoma 14.6. Processing maliciously crafted web content may lead to an unexpected process crash. |
| An out-of-bounds read was addressed with improved bounds checking. This issue is fixed in iOS 16.7.9 and iPadOS 16.7.9, Safari 17.6, iOS 17.6 and iPadOS 17.6, watchOS 10.6, tvOS 17.6, visionOS 1.3, macOS Sonoma 14.6. Processing maliciously crafted web content may lead to an unexpected process crash. |
| A use-after-free issue was addressed with improved memory management. This issue is fixed in iOS 16.7.9 and iPadOS 16.7.9, Safari 17.6, iOS 17.6 and iPadOS 17.6, watchOS 10.6, tvOS 17.6, visionOS 1.3, macOS Sonoma 14.6. Processing maliciously crafted web content may lead to an unexpected process crash. |
| RADIUS Protocol under RFC 2865 is susceptible to forgery attacks by a local attacker who can modify any valid Response (Access-Accept, Access-Reject, or Access-Challenge) to any other response using a chosen-prefix collision attack against MD5 Response Authenticator signature. |
| In the Linux kernel, the following vulnerability has been resolved:
af_unix: Fix data races in unix_release_sock/unix_stream_sendmsg
A data-race condition has been identified in af_unix. In one data path,
the write function unix_release_sock() atomically writes to
sk->sk_shutdown using WRITE_ONCE. However, on the reader side,
unix_stream_sendmsg() does not read it atomically. Consequently, this
issue is causing the following KCSAN splat to occur:
BUG: KCSAN: data-race in unix_release_sock / unix_stream_sendmsg
write (marked) to 0xffff88867256ddbb of 1 bytes by task 7270 on cpu 28:
unix_release_sock (net/unix/af_unix.c:640)
unix_release (net/unix/af_unix.c:1050)
sock_close (net/socket.c:659 net/socket.c:1421)
__fput (fs/file_table.c:422)
__fput_sync (fs/file_table.c:508)
__se_sys_close (fs/open.c:1559 fs/open.c:1541)
__x64_sys_close (fs/open.c:1541)
x64_sys_call (arch/x86/entry/syscall_64.c:33)
do_syscall_64 (arch/x86/entry/common.c:?)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130)
read to 0xffff88867256ddbb of 1 bytes by task 989 on cpu 14:
unix_stream_sendmsg (net/unix/af_unix.c:2273)
__sock_sendmsg (net/socket.c:730 net/socket.c:745)
____sys_sendmsg (net/socket.c:2584)
__sys_sendmmsg (net/socket.c:2638 net/socket.c:2724)
__x64_sys_sendmmsg (net/socket.c:2753 net/socket.c:2750 net/socket.c:2750)
x64_sys_call (arch/x86/entry/syscall_64.c:33)
do_syscall_64 (arch/x86/entry/common.c:?)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130)
value changed: 0x01 -> 0x03
The line numbers are related to commit dd5a440a31fa ("Linux 6.9-rc7").
Commit e1d09c2c2f57 ("af_unix: Fix data races around sk->sk_shutdown.")
addressed a comparable issue in the past regarding sk->sk_shutdown.
However, it overlooked resolving this particular data path.
This patch only offending unix_stream_sendmsg() function, since the
other reads seem to be protected by unix_state_lock() as discussed in |
| In the Linux kernel, the following vulnerability has been resolved:
tty: n_gsm: fix possible out-of-bounds in gsm0_receive()
Assuming the following:
- side A configures the n_gsm in basic option mode
- side B sends the header of a basic option mode frame with data length 1
- side A switches to advanced option mode
- side B sends 2 data bytes which exceeds gsm->len
Reason: gsm->len is not used in advanced option mode.
- side A switches to basic option mode
- side B keeps sending until gsm0_receive() writes past gsm->buf
Reason: Neither gsm->state nor gsm->len have been reset after
reconfiguration.
Fix this by changing gsm->count to gsm->len comparison from equal to less
than. Also add upper limit checks against the constant MAX_MRU in
gsm0_receive() and gsm1_receive() to harden against memory corruption of
gsm->len and gsm->mru.
All other checks remain as we still need to limit the data according to the
user configuration and actual payload size. |
| In the Linux kernel, the following vulnerability has been resolved:
ipvlan: Dont Use skb->sk in ipvlan_process_v{4,6}_outbound
Raw packet from PF_PACKET socket ontop of an IPv6-backed ipvlan device will
hit WARN_ON_ONCE() in sk_mc_loop() through sch_direct_xmit() path.
WARNING: CPU: 2 PID: 0 at net/core/sock.c:775 sk_mc_loop+0x2d/0x70
Modules linked in: sch_netem ipvlan rfkill cirrus drm_shmem_helper sg drm_kms_helper
CPU: 2 PID: 0 Comm: swapper/2 Kdump: loaded Not tainted 6.9.0+ #279
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
RIP: 0010:sk_mc_loop+0x2d/0x70
Code: fa 0f 1f 44 00 00 65 0f b7 15 f7 96 a3 4f 31 c0 66 85 d2 75 26 48 85 ff 74 1c
RSP: 0018:ffffa9584015cd78 EFLAGS: 00010212
RAX: 0000000000000011 RBX: ffff91e585793e00 RCX: 0000000002c6a001
RDX: 0000000000000000 RSI: 0000000000000040 RDI: ffff91e589c0f000
RBP: ffff91e5855bd100 R08: 0000000000000000 R09: 3d00545216f43d00
R10: ffff91e584fdcc50 R11: 00000060dd8616f4 R12: ffff91e58132d000
R13: ffff91e584fdcc68 R14: ffff91e5869ce800 R15: ffff91e589c0f000
FS: 0000000000000000(0000) GS:ffff91e898100000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f788f7c44c0 CR3: 0000000008e1a000 CR4: 00000000000006f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<IRQ>
? __warn (kernel/panic.c:693)
? sk_mc_loop (net/core/sock.c:760)
? report_bug (lib/bug.c:201 lib/bug.c:219)
? handle_bug (arch/x86/kernel/traps.c:239)
? exc_invalid_op (arch/x86/kernel/traps.c:260 (discriminator 1))
? asm_exc_invalid_op (./arch/x86/include/asm/idtentry.h:621)
? sk_mc_loop (net/core/sock.c:760)
ip6_finish_output2 (net/ipv6/ip6_output.c:83 (discriminator 1))
? nf_hook_slow (net/netfilter/core.c:626)
ip6_finish_output (net/ipv6/ip6_output.c:222)
? __pfx_ip6_finish_output (net/ipv6/ip6_output.c:215)
ipvlan_xmit_mode_l3 (drivers/net/ipvlan/ipvlan_core.c:602) ipvlan
ipvlan_start_xmit (drivers/net/ipvlan/ipvlan_main.c:226) ipvlan
dev_hard_start_xmit (net/core/dev.c:3594)
sch_direct_xmit (net/sched/sch_generic.c:343)
__qdisc_run (net/sched/sch_generic.c:416)
net_tx_action (net/core/dev.c:5286)
handle_softirqs (kernel/softirq.c:555)
__irq_exit_rcu (kernel/softirq.c:589)
sysvec_apic_timer_interrupt (arch/x86/kernel/apic/apic.c:1043)
The warning triggers as this:
packet_sendmsg
packet_snd //skb->sk is packet sk
__dev_queue_xmit
__dev_xmit_skb //q->enqueue is not NULL
__qdisc_run
sch_direct_xmit
dev_hard_start_xmit
ipvlan_start_xmit
ipvlan_xmit_mode_l3 //l3 mode
ipvlan_process_outbound //vepa flag
ipvlan_process_v6_outbound
ip6_local_out
__ip6_finish_output
ip6_finish_output2 //multicast packet
sk_mc_loop //sk->sk_family is AF_PACKET
Call ip{6}_local_out() with NULL sk in ipvlan as other tunnels to fix this. |
| The issue was addressed with improved bounds checks. This issue is fixed in tvOS 17.5, visionOS 1.2, Safari 17.5, iOS 17.5 and iPadOS 17.5, watchOS 10.5, macOS Sonoma 14.5. Processing maliciously crafted web content may lead to arbitrary code execution. |