| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: udc: fix use-after-free in usb_gadget_state_work
A race condition during gadget teardown can lead to a use-after-free
in usb_gadget_state_work(), as reported by KASAN:
BUG: KASAN: invalid-access in sysfs_notify+0x2c/0xd0
Workqueue: events usb_gadget_state_work
The fundamental race occurs because a concurrent event (e.g., an
interrupt) can call usb_gadget_set_state() and schedule gadget->work
at any time during the cleanup process in usb_del_gadget().
Commit 399a45e5237c ("usb: gadget: core: flush gadget workqueue after
device removal") attempted to fix this by moving flush_work() to after
device_del(). However, this does not fully solve the race, as a new
work item can still be scheduled *after* flush_work() completes but
before the gadget's memory is freed, leading to the same use-after-free.
This patch fixes the race condition robustly by introducing a 'teardown'
flag and a 'state_lock' spinlock to the usb_gadget struct. The flag is
set during cleanup in usb_del_gadget() *before* calling flush_work() to
prevent any new work from being scheduled once cleanup has commenced.
The scheduling site, usb_gadget_set_state(), now checks this flag under
the lock before queueing the work, thus safely closing the race window. |
| In the Linux kernel, the following vulnerability has been resolved:
libceph: fix potential use-after-free in have_mon_and_osd_map()
The wait loop in __ceph_open_session() can race with the client
receiving a new monmap or osdmap shortly after the initial map is
received. Both ceph_monc_handle_map() and handle_one_map() install
a new map immediately after freeing the old one
kfree(monc->monmap);
monc->monmap = monmap;
ceph_osdmap_destroy(osdc->osdmap);
osdc->osdmap = newmap;
under client->monc.mutex and client->osdc.lock respectively, but
because neither is taken in have_mon_and_osd_map() it's possible for
client->monc.monmap->epoch and client->osdc.osdmap->epoch arms in
client->monc.monmap && client->monc.monmap->epoch &&
client->osdc.osdmap && client->osdc.osdmap->epoch;
condition to dereference an already freed map. This happens to be
reproducible with generic/395 and generic/397 with KASAN enabled:
BUG: KASAN: slab-use-after-free in have_mon_and_osd_map+0x56/0x70
Read of size 4 at addr ffff88811012d810 by task mount.ceph/13305
CPU: 2 UID: 0 PID: 13305 Comm: mount.ceph Not tainted 6.14.0-rc2-build2+ #1266
...
Call Trace:
<TASK>
have_mon_and_osd_map+0x56/0x70
ceph_open_session+0x182/0x290
ceph_get_tree+0x333/0x680
vfs_get_tree+0x49/0x180
do_new_mount+0x1a3/0x2d0
path_mount+0x6dd/0x730
do_mount+0x99/0xe0
__do_sys_mount+0x141/0x180
do_syscall_64+0x9f/0x100
entry_SYSCALL_64_after_hwframe+0x76/0x7e
</TASK>
Allocated by task 13305:
ceph_osdmap_alloc+0x16/0x130
ceph_osdc_init+0x27a/0x4c0
ceph_create_client+0x153/0x190
create_fs_client+0x50/0x2a0
ceph_get_tree+0xff/0x680
vfs_get_tree+0x49/0x180
do_new_mount+0x1a3/0x2d0
path_mount+0x6dd/0x730
do_mount+0x99/0xe0
__do_sys_mount+0x141/0x180
do_syscall_64+0x9f/0x100
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Freed by task 9475:
kfree+0x212/0x290
handle_one_map+0x23c/0x3b0
ceph_osdc_handle_map+0x3c9/0x590
mon_dispatch+0x655/0x6f0
ceph_con_process_message+0xc3/0xe0
ceph_con_v1_try_read+0x614/0x760
ceph_con_workfn+0x2de/0x650
process_one_work+0x486/0x7c0
process_scheduled_works+0x73/0x90
worker_thread+0x1c8/0x2a0
kthread+0x2ec/0x300
ret_from_fork+0x24/0x40
ret_from_fork_asm+0x1a/0x30
Rewrite the wait loop to check the above condition directly with
client->monc.mutex and client->osdc.lock taken as appropriate. While
at it, improve the timeout handling (previously mount_timeout could be
exceeded in case wait_event_interruptible_timeout() slept more than
once) and access client->auth_err under client->monc.mutex to match
how it's set in finish_auth().
monmap_show() and osdmap_show() now take the respective lock before
accessing the map as well. |
| In the Linux kernel, the following vulnerability has been resolved:
most: usb: fix double free on late probe failure
The MOST subsystem has a non-standard registration function which frees
the interface on registration failures and on deregistration.
This unsurprisingly leads to bugs in the MOST drivers, and a couple of
recent changes turned a reference underflow and use-after-free in the
USB driver into several double free and a use-after-free on late probe
failures. |
| In the Linux kernel, the following vulnerability has been resolved:
veth: more robust handing of race to avoid txq getting stuck
Commit dc82a33297fc ("veth: apply qdisc backpressure on full ptr_ring to
reduce TX drops") introduced a race condition that can lead to a permanently
stalled TXQ. This was observed in production on ARM64 systems (Ampere Altra
Max).
The race occurs in veth_xmit(). The producer observes a full ptr_ring and
stops the queue (netif_tx_stop_queue()). The subsequent conditional logic,
intended to re-wake the queue if the consumer had just emptied it (if
(__ptr_ring_empty(...)) netif_tx_wake_queue()), can fail. This leads to a
"lost wakeup" where the TXQ remains stopped (QUEUE_STATE_DRV_XOFF) and
traffic halts.
This failure is caused by an incorrect use of the __ptr_ring_empty() API
from the producer side. As noted in kernel comments, this check is not
guaranteed to be correct if a consumer is operating on another CPU. The
empty test is based on ptr_ring->consumer_head, making it reliable only for
the consumer. Using this check from the producer side is fundamentally racy.
This patch fixes the race by adopting the more robust logic from an earlier
version V4 of the patchset, which always flushed the peer:
(1) In veth_xmit(), the racy conditional wake-up logic and its memory barrier
are removed. Instead, after stopping the queue, we unconditionally call
__veth_xdp_flush(rq). This guarantees that the NAPI consumer is scheduled,
making it solely responsible for re-waking the TXQ.
This handles the race where veth_poll() consumes all packets and completes
NAPI *before* veth_xmit() on the producer side has called netif_tx_stop_queue.
The __veth_xdp_flush(rq) will observe rx_notify_masked is false and schedule
NAPI.
(2) On the consumer side, the logic for waking the peer TXQ is moved out of
veth_xdp_rcv() and placed at the end of the veth_poll() function. This
placement is part of fixing the race, as the netif_tx_queue_stopped() check
must occur after rx_notify_masked is potentially set to false during NAPI
completion.
This handles the race where veth_poll() consumes all packets, but haven't
finished (rx_notify_masked is still true). The producer veth_xmit() stops the
TXQ and __veth_xdp_flush(rq) will observe rx_notify_masked is true, meaning
not starting NAPI. Then veth_poll() change rx_notify_masked to false and
stops NAPI. Before exiting veth_poll() will observe TXQ is stopped and wake
it up. |
| In the Linux kernel, the following vulnerability has been resolved:
mtd: rawnand: cadence: fix DMA device NULL pointer dereference
The DMA device pointer `dma_dev` was being dereferenced before ensuring
that `cdns_ctrl->dmac` is properly initialized.
Move the assignment of `dma_dev` after successfully acquiring the DMA
channel to ensure the pointer is valid before use. |
| In the Linux kernel, the following vulnerability has been resolved:
nouveau/firmware: Add missing kfree() of nvkm_falcon_fw::boot
nvkm_falcon_fw::boot is allocated, but no one frees it. This causes a
kmemleak warning.
Make sure this data is deallocated. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/mempool: fix poisoning order>0 pages with HIGHMEM
The kernel test has reported:
BUG: unable to handle page fault for address: fffba000
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
*pde = 03171067 *pte = 00000000
Oops: Oops: 0002 [#1]
CPU: 0 UID: 0 PID: 1 Comm: swapper/0 Tainted: G T 6.18.0-rc2-00031-gec7f31b2a2d3 #1 NONE a1d066dfe789f54bc7645c7989957d2bdee593ca
Tainted: [T]=RANDSTRUCT
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
EIP: memset (arch/x86/include/asm/string_32.h:168 arch/x86/lib/memcpy_32.c:17)
Code: a5 8b 4d f4 83 e1 03 74 02 f3 a4 83 c4 04 5e 5f 5d 2e e9 73 41 01 00 90 90 90 3e 8d 74 26 00 55 89 e5 57 56 89 c6 89 d0 89 f7 <f3> aa 89 f0 5e 5f 5d 2e e9 53 41 01 00 cc cc cc 55 89 e5 53 57 56
EAX: 0000006b EBX: 00000015 ECX: 001fefff EDX: 0000006b
ESI: fffb9000 EDI: fffba000 EBP: c611fbf0 ESP: c611fbe8
DS: 007b ES: 007b FS: 0000 GS: 0000 SS: 0068 EFLAGS: 00010287
CR0: 80050033 CR2: fffba000 CR3: 0316e000 CR4: 00040690
Call Trace:
poison_element (mm/mempool.c:83 mm/mempool.c:102)
mempool_init_node (mm/mempool.c:142 mm/mempool.c:226)
mempool_init_noprof (mm/mempool.c:250 (discriminator 1))
? mempool_alloc_pages (mm/mempool.c:640)
bio_integrity_initfn (block/bio-integrity.c:483 (discriminator 8))
? mempool_alloc_pages (mm/mempool.c:640)
do_one_initcall (init/main.c:1283)
Christoph found out this is due to the poisoning code not dealing
properly with CONFIG_HIGHMEM because only the first page is mapped but
then the whole potentially high-order page is accessed.
We could give up on HIGHMEM here, but it's straightforward to fix this
with a loop that's mapping, poisoning or checking and unmapping
individual pages. |
| In the Linux kernel, the following vulnerability has been resolved:
nilfs2: avoid having an active sc_timer before freeing sci
Because kthread_stop did not stop sc_task properly and returned -EINTR,
the sc_timer was not properly closed, ultimately causing the problem [1]
reported by syzbot when freeing sci due to the sc_timer not being closed.
Because the thread sc_task main function nilfs_segctor_thread() returns 0
when it succeeds, when the return value of kthread_stop() is not 0 in
nilfs_segctor_destroy(), we believe that it has not properly closed
sc_timer.
We use timer_shutdown_sync() to sync wait for sc_timer to shutdown, and
set the value of sc_task to NULL under the protection of lock
sc_state_lock, so as to avoid the issue caused by sc_timer not being
properly shutdowned.
[1]
ODEBUG: free active (active state 0) object: 00000000dacb411a object type: timer_list hint: nilfs_construction_timeout
Call trace:
nilfs_segctor_destroy fs/nilfs2/segment.c:2811 [inline]
nilfs_detach_log_writer+0x668/0x8cc fs/nilfs2/segment.c:2877
nilfs_put_super+0x4c/0x12c fs/nilfs2/super.c:509 |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix incomplete backport in cfids_invalidation_worker()
The previous commit bdb596ceb4b7 ("smb: client: fix potential UAF in
smb2_close_cached_fid()") was an incomplete backport and missed one
kref_put() call in cfids_invalidation_worker() that should have been
converted to close_cached_dir(). |
| In the Linux kernel, the following vulnerability has been resolved:
fs/namespace: fix reference leak in grab_requested_mnt_ns
lookup_mnt_ns() already takes a reference on mnt_ns.
grab_requested_mnt_ns() doesn't need to take an extra reference. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/tegra: Add call to put_pid()
Add a call to put_pid() corresponding to get_task_pid().
host1x_memory_context_alloc() does not take ownership of the PID so we
need to free it here to avoid leaking.
[mperttunen@nvidia.com: reword commit message] |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Check NULL before accessing
[WHAT]
IGT kms_cursor_legacy's long-nonblocking-modeset-vs-cursor-atomic
fails with NULL pointer dereference. This can be reproduced with
both an eDP panel and a DP monitors connected.
BUG: kernel NULL pointer dereference, address: 0000000000000000
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: Oops: 0000 [#1] SMP NOPTI
CPU: 13 UID: 0 PID: 2960 Comm: kms_cursor_lega Not tainted
6.16.0-99-custom #8 PREEMPT(voluntary)
Hardware name: AMD ........
RIP: 0010:dc_stream_get_scanoutpos+0x34/0x130 [amdgpu]
Code: 57 4d 89 c7 41 56 49 89 ce 41 55 49 89 d5 41 54 49
89 fc 53 48 83 ec 18 48 8b 87 a0 64 00 00 48 89 75 d0 48 c7 c6 e0 41 30
c2 <48> 8b 38 48 8b 9f 68 06 00 00 e8 8d d7 fd ff 31 c0 48 81 c3 e0 02
RSP: 0018:ffffd0f3c2bd7608 EFLAGS: 00010292
RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffd0f3c2bd7668
RDX: ffffd0f3c2bd7664 RSI: ffffffffc23041e0 RDI: ffff8b32494b8000
RBP: ffffd0f3c2bd7648 R08: ffffd0f3c2bd766c R09: ffffd0f3c2bd7760
R10: ffffd0f3c2bd7820 R11: 0000000000000000 R12: ffff8b32494b8000
R13: ffffd0f3c2bd7664 R14: ffffd0f3c2bd7668 R15: ffffd0f3c2bd766c
FS: 000071f631b68700(0000) GS:ffff8b399f114000(0000)
knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 00000001b8105000 CR4: 0000000000f50ef0
PKRU: 55555554
Call Trace:
<TASK>
dm_crtc_get_scanoutpos+0xd7/0x180 [amdgpu]
amdgpu_display_get_crtc_scanoutpos+0x86/0x1c0 [amdgpu]
? __pfx_amdgpu_crtc_get_scanout_position+0x10/0x10[amdgpu]
amdgpu_crtc_get_scanout_position+0x27/0x50 [amdgpu]
drm_crtc_vblank_helper_get_vblank_timestamp_internal+0xf7/0x400
drm_crtc_vblank_helper_get_vblank_timestamp+0x1c/0x30
drm_crtc_get_last_vbltimestamp+0x55/0x90
drm_crtc_next_vblank_start+0x45/0xa0
drm_atomic_helper_wait_for_fences+0x81/0x1f0
...
(cherry picked from commit 621e55f1919640acab25383362b96e65f2baea3c) |
| In the Linux kernel, the following vulnerability has been resolved:
erofs: avoid infinite loops due to corrupted subpage compact indexes
Robert reported an infinite loop observed by two crafted images.
The root cause is that `clusterofs` can be larger than `lclustersize`
for !NONHEAD `lclusters` in corrupted subpage compact indexes, e.g.:
blocksize = lclustersize = 512 lcn = 6 clusterofs = 515
Move the corresponding check for full compress indexes to
`z_erofs_load_lcluster_from_disk()` to also cover subpage compact
compress indexes.
It also fixes the position of `m->type >= Z_EROFS_LCLUSTER_TYPE_MAX`
check, since it should be placed right after
`z_erofs_load_{compact,full}_lcluster()`. |
| In the Linux kernel, the following vulnerability has been resolved:
bfs: Reconstruct file type when loading from disk
syzbot is reporting that S_IFMT bits of inode->i_mode can become bogus when
the S_IFMT bits of the 32bits "mode" field loaded from disk are corrupted
or when the 32bits "attributes" field loaded from disk are corrupted.
A documentation says that BFS uses only lower 9 bits of the "mode" field.
But I can't find an explicit explanation that the unused upper 23 bits
(especially, the S_IFMT bits) are initialized with 0.
Therefore, ignore the S_IFMT bits of the "mode" field loaded from disk.
Also, verify that the value of the "attributes" field loaded from disk is
either BFS_VREG or BFS_VDIR (because BFS supports only regular files and
the root directory). |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm: make sure last_fence is always updated
Update last_fence in the vm-bind path instead of kernel managed path.
last_fence is used to wait for work to finish in vm_bind contexts but not
used for kernel managed contexts.
This fixes a bug where last_fence is not waited on context close leading
to faults as resources are freed while in use.
Patchwork: https://patchwork.freedesktop.org/patch/680080/ |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: target: tcm_loop: Fix segfault in tcm_loop_tpg_address_show()
If the allocation of tl_hba->sh fails in tcm_loop_driver_probe() and we
attempt to dereference it in tcm_loop_tpg_address_show() we will get a
segfault, see below for an example. So, check tl_hba->sh before
dereferencing it.
Unable to allocate struct scsi_host
BUG: kernel NULL pointer dereference, address: 0000000000000194
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 1 PID: 8356 Comm: tokio-runtime-w Not tainted 6.6.104.2-4.azl3 #1
Hardware name: Microsoft Corporation Virtual Machine/Virtual Machine, BIOS Hyper-V UEFI Release v4.1 09/28/2024
RIP: 0010:tcm_loop_tpg_address_show+0x2e/0x50 [tcm_loop]
...
Call Trace:
<TASK>
configfs_read_iter+0x12d/0x1d0 [configfs]
vfs_read+0x1b5/0x300
ksys_read+0x6f/0xf0
... |
| In the Linux kernel, the following vulnerability has been resolved:
mm/memfd: fix information leak in hugetlb folios
When allocating hugetlb folios for memfd, three initialization steps are
missing:
1. Folios are not zeroed, leading to kernel memory disclosure to userspace
2. Folios are not marked uptodate before adding to page cache
3. hugetlb_fault_mutex is not taken before hugetlb_add_to_page_cache()
The memfd allocation path bypasses the normal page fault handler
(hugetlb_no_page) which would handle all of these initialization steps.
This is problematic especially for udmabuf use cases where folios are
pinned and directly accessed by userspace via DMA.
Fix by matching the initialization pattern used in hugetlb_no_page():
- Zero the folio using folio_zero_user() which is optimized for huge pages
- Mark it uptodate with folio_mark_uptodate()
- Take hugetlb_fault_mutex before adding to page cache to prevent races
The folio_zero_user() change also fixes a potential security issue where
uninitialized kernel memory could be disclosed to userspace through read()
or mmap() operations on the memfd. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to detect potential corrupted nid in free_nid_list
As reported, on-disk footer.ino and footer.nid is the same and
out-of-range, let's add sanity check on f2fs_alloc_nid() to detect
any potential corruption in free_nid_list. |
| In the Linux kernel, the following vulnerability has been resolved:
posix-timers: Plug potential memory leak in do_timer_create()
When posix timer creation is set to allocate a given timer ID and the
access to the user space value faults, the function terminates without
freeing the already allocated posix timer structure.
Move the allocation after the user space access to cure that.
[ tglx: Massaged change log ] |
| In the Linux kernel, the following vulnerability has been resolved:
s390/pci: Avoid deadlock between PCI error recovery and mlx5 crdump
Do not block PCI config accesses through pci_cfg_access_lock() when
executing the s390 variant of PCI error recovery: Acquire just
device_lock() instead of pci_dev_lock() as powerpc's EEH and
generig PCI AER processing do.
During error recovery testing a pair of tasks was reported to be hung:
mlx5_core 0000:00:00.1: mlx5_health_try_recover:338:(pid 5553): health recovery flow aborted, PCI reads still not working
INFO: task kmcheck:72 blocked for more than 122 seconds.
Not tainted 5.14.0-570.12.1.bringup7.el9.s390x #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:kmcheck state:D stack:0 pid:72 tgid:72 ppid:2 flags:0x00000000
Call Trace:
[<000000065256f030>] __schedule+0x2a0/0x590
[<000000065256f356>] schedule+0x36/0xe0
[<000000065256f572>] schedule_preempt_disabled+0x22/0x30
[<0000000652570a94>] __mutex_lock.constprop.0+0x484/0x8a8
[<000003ff800673a4>] mlx5_unload_one+0x34/0x58 [mlx5_core]
[<000003ff8006745c>] mlx5_pci_err_detected+0x94/0x140 [mlx5_core]
[<0000000652556c5a>] zpci_event_attempt_error_recovery+0xf2/0x398
[<0000000651b9184a>] __zpci_event_error+0x23a/0x2c0
INFO: task kworker/u1664:6:1514 blocked for more than 122 seconds.
Not tainted 5.14.0-570.12.1.bringup7.el9.s390x #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:kworker/u1664:6 state:D stack:0 pid:1514 tgid:1514 ppid:2 flags:0x00000000
Workqueue: mlx5_health0000:00:00.0 mlx5_fw_fatal_reporter_err_work [mlx5_core]
Call Trace:
[<000000065256f030>] __schedule+0x2a0/0x590
[<000000065256f356>] schedule+0x36/0xe0
[<0000000652172e28>] pci_wait_cfg+0x80/0xe8
[<0000000652172f94>] pci_cfg_access_lock+0x74/0x88
[<000003ff800916b6>] mlx5_vsc_gw_lock+0x36/0x178 [mlx5_core]
[<000003ff80098824>] mlx5_crdump_collect+0x34/0x1c8 [mlx5_core]
[<000003ff80074b62>] mlx5_fw_fatal_reporter_dump+0x6a/0xe8 [mlx5_core]
[<0000000652512242>] devlink_health_do_dump.part.0+0x82/0x168
[<0000000652513212>] devlink_health_report+0x19a/0x230
[<000003ff80075a12>] mlx5_fw_fatal_reporter_err_work+0xba/0x1b0 [mlx5_core]
No kernel log of the exact same error with an upstream kernel is
available - but the very same deadlock situation can be constructed there,
too:
- task: kmcheck
mlx5_unload_one() tries to acquire devlink lock while the PCI error
recovery code has set pdev->block_cfg_access by way of
pci_cfg_access_lock()
- task: kworker
mlx5_crdump_collect() tries to set block_cfg_access through
pci_cfg_access_lock() while devlink_health_report() had acquired
the devlink lock.
A similar deadlock situation can be reproduced by requesting a
crdump with
> devlink health dump show pci/<BDF> reporter fw_fatal
while PCI error recovery is executed on the same <BDF> physical function
by mlx5_core's pci_error_handlers. On s390 this can be injected with
> zpcictl --reset-fw <BDF>
Tests with this patch failed to reproduce that second deadlock situation,
the devlink command is rejected with "kernel answers: Permission denied" -
and we get a kernel log message of:
mlx5_core 1ed0:00:00.1: mlx5_crdump_collect:50:(pid 254382): crdump: failed to lock vsc gw err -5
because the config read of VSC_SEMAPHORE is rejected by the underlying
hardware.
Two prior attempts to address this issue have been discussed and
ultimately rejected [see link], with the primary argument that s390's
implementation of PCI error recovery is imposing restrictions that
neither powerpc's EEH nor PCI AER handling need. Tests show that PCI
error recovery on s390 is running to completion even without blocking
access to PCI config space. |