| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Spree is an open source e-commerce solution built with Ruby on Rails. Prior to versions 4.10.2, 5.0.7, 5.1.9, and 5.2.5, an Unauthenticated Insecure Direct Object Reference (IDOR) vulnerability was identified that allows an unauthenticated attacker to access guest address information without supplying valid credentials or session cookies. This issue has been patched in versions 4.10.2, 5.0.7, 5.1.9, and 5.2.5. |
| Angular is a development platform for building mobile and desktop web applications using TypeScript/JavaScript and other languages. Prior to versions 19.2.18, 20.3.16, 21.0.7, and 21.1.0-rc.0, a cross-site scripting (XSS) vulnerability has been identified in the Angular Template Compiler. The vulnerability exists because Angular’s internal sanitization schema fails to recognize the href and xlink:href attributes of SVG <script> elements as a Resource URL context. This issue has been patched in versions 19.2.18, 20.3.16, 21.0.7, and 21.1.0-rc.0. |
| AWS SDK for .NET works with Amazon Web Services to help build scalable solutions with Amazon S3, Amazon DynamoDB, Amazon Glacier, and more. From versions 4.0.0 to before 4.0.3.3, Customer applications could be configured to improperly route AWS API calls to non-existent or non-AWS hosts. This notification is related to the use of specific values for the region input field when calling AWS services. An actor with access to the environment in which the SDK is used could set the region input field to an invalid value. This issue has been patched in version 4.0.3.3. |
| pypdf is a free and open-source pure-python PDF library. Prior to version 6.6.0, pypdf has possible long runtimes for malformed startxref. An attacker who uses this vulnerability can craft a PDF which leads to possibly long runtimes for invalid startxref entries. When rebuilding the cross-reference table, PDF files with lots of whitespace characters become problematic. Only the non-strict reading mode is affected. Only the non-strict reading mode is affected. This issue has been patched in version 6.6.0. |
| RustCrypto: Elliptic Curves is general purpose Elliptic Curve Cryptography (ECC) support, including types and traits for representing various elliptic curve forms, scalars, points, and public/secret keys composed thereof. In versions 0.14.0-pre.0 and 0.14.0-rc.0, a critical vulnerability exists in the SM2 Public Key Encryption (PKE) implementation where the ephemeral nonce k is generated with severely reduced entropy. A unit mismatch error causes the nonce generation function to request only 32 bits of randomness instead of the expected 256 bits. This reduces the security of the encryption from a 128-bit level to a trivial 16-bit level, allowing a practical attack to recover the nonce k and decrypt any ciphertext given only the public key and ciphertext. This issue has been patched via commit e4f7778. |
| RustCrypto: Elliptic Curves is general purpose Elliptic Curve Cryptography (ECC) support, including types and traits for representing various elliptic curve forms, scalars, points, and public/secret keys composed thereof. In versions 0.14.0-pre.0 and 0.14.0-rc.0, a denial-of-service vulnerability exists in the SM2 public-key encryption (PKE) implementation: the decrypt() path performs unchecked slice::split_at operations on input buffers derived from untrusted ciphertext. An attacker can submit short/undersized ciphertext or carefully-crafted DER-encoded structures to trigger bounds-check panics (Rust unwinding) which crash the calling thread or process. This issue has been patched via commit e60e991. |
| virtualenv is a tool for creating isolated virtual python environments. Prior to version 20.36.1, TOCTOU (Time-of-Check-Time-of-Use) vulnerabilities in virtualenv allow local attackers to perform symlink-based attacks on directory creation operations. An attacker with local access can exploit a race condition between directory existence checks and creation to redirect virtualenv's app_data and lock file operations to attacker-controlled locations. This issue has been patched in version 20.36.1. |
| RustCrypto: Signatures offers support for digital signatures, which provide authentication of data using public-key cryptography. Prior to version 0.1.0-rc.2, a timing side-channel was discovered in the Decompose algorithm which is used during ML-DSA signing to generate hints for the signature. This issue has been patched in version 0.1.0-rc.2. |
| SOUND4 IMPACT/FIRST/PULSE/Eco <=2.x contains an unauthenticated remote code execution vulnerability in the firmware upload functionality with path traversal flaw. Attackers can exploit the upload.cgi script to write malicious files to the system with www-data permissions, enabling unauthorized access and code execution. |
| A vulnerability has been identified in RUGGEDCOM RST2428P (6GK6242-6PA00) (All versions < V3.2), SCALANCE XCH328 (6GK5328-4TS01-2EC2) (All versions < V3.2), SCALANCE XCM324 (6GK5324-8TS01-2AC2) (All versions < V3.2), SCALANCE XCM328 (6GK5328-4TS01-2AC2) (All versions < V3.2), SCALANCE XCM332 (6GK5332-0GA01-2AC2) (All versions < V3.2), SCALANCE XRH334 (24 V DC, 8xFO, CC) (6GK5334-2TS01-2ER3) (All versions < V3.2), SCALANCE XRM334 (230 V AC, 12xFO) (6GK5334-3TS01-3AR3) (All versions < V3.2), SCALANCE XRM334 (230 V AC, 8xFO) (6GK5334-2TS01-3AR3) (All versions < V3.2), SCALANCE XRM334 (230V AC, 2x10G, 24xSFP, 8xSFP+) (6GK5334-5TS01-3AR3) (All versions < V3.2), SCALANCE XRM334 (24 V DC, 12xFO) (6GK5334-3TS01-2AR3) (All versions < V3.2), SCALANCE XRM334 (24 V DC, 8xFO) (6GK5334-2TS01-2AR3) (All versions < V3.2), SCALANCE XRM334 (24V DC, 2x10G, 24xSFP, 8xSFP+) (6GK5334-5TS01-2AR3) (All versions < V3.2), SCALANCE XRM334 (2x230 V AC, 12xFO) (6GK5334-3TS01-4AR3) (All versions < V3.2), SCALANCE XRM334 (2x230 V AC, 8xFO) (6GK5334-2TS01-4AR3) (All versions < V3.2), SCALANCE XRM334 (2x230V AC, 2x10G, 24xSFP, 8xSFP+) (6GK5334-5TS01-4AR3) (All versions < V3.2). The "Load Configuration from Local PC" functionality in the web interface of affected products contains a race condition vulnerability. This could allow an authenticated remote attacker to make the affected product load an attacker controlled configuration instead of the legitimate one. Successful exploitation requires that a legitimate administrator invokes the functionality and the attacker wins the race condition. |
| A vulnerability has been identified in RUGGEDCOM RST2428P (6GK6242-6PA00) (All versions < V3.2), SCALANCE XCH328 (6GK5328-4TS01-2EC2) (All versions < V3.2), SCALANCE XCM324 (6GK5324-8TS01-2AC2) (All versions < V3.2), SCALANCE XCM328 (6GK5328-4TS01-2AC2) (All versions < V3.2), SCALANCE XCM332 (6GK5332-0GA01-2AC2) (All versions < V3.2), SCALANCE XRH334 (24 V DC, 8xFO, CC) (6GK5334-2TS01-2ER3) (All versions < V3.2), SCALANCE XRM334 (230 V AC, 12xFO) (6GK5334-3TS01-3AR3) (All versions < V3.2), SCALANCE XRM334 (230 V AC, 8xFO) (6GK5334-2TS01-3AR3) (All versions < V3.2), SCALANCE XRM334 (230V AC, 2x10G, 24xSFP, 8xSFP+) (6GK5334-5TS01-3AR3) (All versions < V3.2), SCALANCE XRM334 (24 V DC, 12xFO) (6GK5334-3TS01-2AR3) (All versions < V3.2), SCALANCE XRM334 (24 V DC, 8xFO) (6GK5334-2TS01-2AR3) (All versions < V3.2), SCALANCE XRM334 (24V DC, 2x10G, 24xSFP, 8xSFP+) (6GK5334-5TS01-2AR3) (All versions < V3.2), SCALANCE XRM334 (2x230 V AC, 12xFO) (6GK5334-3TS01-4AR3) (All versions < V3.2), SCALANCE XRM334 (2x230 V AC, 8xFO) (6GK5334-2TS01-4AR3) (All versions < V3.2), SCALANCE XRM334 (2x230V AC, 2x10G, 24xSFP, 8xSFP+) (6GK5334-5TS01-4AR3) (All versions < V3.2). An internal session termination functionality in the web interface of affected products contains an incorrect authorization check vulnerability. This could allow an authenticated remote attacker with "guest" role to terminate legitimate users' sessions. |
| A vulnerability has been identified in RUGGEDCOM RST2428P (6GK6242-6PA00) (All versions < V3.2), SCALANCE XCH328 (6GK5328-4TS01-2EC2) (All versions < V3.2), SCALANCE XCM324 (6GK5324-8TS01-2AC2) (All versions < V3.2), SCALANCE XCM328 (6GK5328-4TS01-2AC2) (All versions < V3.2), SCALANCE XCM332 (6GK5332-0GA01-2AC2) (All versions < V3.2), SCALANCE XRH334 (24 V DC, 8xFO, CC) (6GK5334-2TS01-2ER3) (All versions < V3.2), SCALANCE XRM334 (230 V AC, 12xFO) (6GK5334-3TS01-3AR3) (All versions < V3.2), SCALANCE XRM334 (230 V AC, 8xFO) (6GK5334-2TS01-3AR3) (All versions < V3.2), SCALANCE XRM334 (230V AC, 2x10G, 24xSFP, 8xSFP+) (6GK5334-5TS01-3AR3) (All versions < V3.2), SCALANCE XRM334 (24 V DC, 12xFO) (6GK5334-3TS01-2AR3) (All versions < V3.2), SCALANCE XRM334 (24 V DC, 8xFO) (6GK5334-2TS01-2AR3) (All versions < V3.2), SCALANCE XRM334 (24V DC, 2x10G, 24xSFP, 8xSFP+) (6GK5334-5TS01-2AR3) (All versions < V3.2), SCALANCE XRM334 (2x230 V AC, 12xFO) (6GK5334-3TS01-4AR3) (All versions < V3.2), SCALANCE XRM334 (2x230 V AC, 8xFO) (6GK5334-2TS01-4AR3) (All versions < V3.2), SCALANCE XRM334 (2x230V AC, 2x10G, 24xSFP, 8xSFP+) (6GK5334-5TS01-4AR3) (All versions < V3.2). The "Load Rollback" functionality in the web interface of affected products contains an incorrect authorization check vulnerability. This could allow an authenticated remote attacker with "guest" role to make the affected product roll back configuration changes made by privileged users. |
| A vulnerability has been identified in RUGGEDCOM ROX MX5000 (All versions < V2.17.0), RUGGEDCOM ROX MX5000RE (All versions < V2.17.0), RUGGEDCOM ROX RX1400 (All versions < V2.17.0), RUGGEDCOM ROX RX1500 (All versions < V2.17.0), RUGGEDCOM ROX RX1501 (All versions < V2.17.0), RUGGEDCOM ROX RX1510 (All versions < V2.17.0), RUGGEDCOM ROX RX1511 (All versions < V2.17.0), RUGGEDCOM ROX RX1512 (All versions < V2.17.0), RUGGEDCOM ROX RX1524 (All versions < V2.17.0), RUGGEDCOM ROX RX1536 (All versions < V2.17.0), RUGGEDCOM ROX RX5000 (All versions < V2.17.0). Under certain conditions, IPsec may allow code injection in the affected device. An attacker could leverage this scenario to execute arbitrary code as root user. |
| A vulnerability has been identified in RUGGEDCOM ROX MX5000 (All versions < V2.17.0), RUGGEDCOM ROX MX5000RE (All versions < V2.17.0), RUGGEDCOM ROX RX1400 (All versions < V2.17.0), RUGGEDCOM ROX RX1500 (All versions < V2.17.0), RUGGEDCOM ROX RX1501 (All versions < V2.17.0), RUGGEDCOM ROX RX1510 (All versions < V2.17.0), RUGGEDCOM ROX RX1511 (All versions < V2.17.0), RUGGEDCOM ROX RX1512 (All versions < V2.17.0), RUGGEDCOM ROX RX1524 (All versions < V2.17.0), RUGGEDCOM ROX RX1536 (All versions < V2.17.0), RUGGEDCOM ROX RX5000 (All versions < V2.17.0). Code injection can be achieved when the affected device is using VRF (Virtual Routing and Forwarding). An attacker could leverage this scenario to execute arbitrary code as root user. |
| A vulnerability has been identified in RUGGEDCOM ROX MX5000 (All versions < V2.17.0), RUGGEDCOM ROX MX5000RE (All versions < V2.17.0), RUGGEDCOM ROX RX1400 (All versions < V2.17.0), RUGGEDCOM ROX RX1500 (All versions < V2.17.0), RUGGEDCOM ROX RX1501 (All versions < V2.17.0), RUGGEDCOM ROX RX1510 (All versions < V2.17.0), RUGGEDCOM ROX RX1511 (All versions < V2.17.0), RUGGEDCOM ROX RX1512 (All versions < V2.17.0), RUGGEDCOM ROX RX1524 (All versions < V2.17.0), RUGGEDCOM ROX RX1536 (All versions < V2.17.0), RUGGEDCOM ROX RX5000 (All versions < V2.17.0). The SCEP client available in the affected device for secure certificate enrollment lacks validation of multiple fields. An attacker could leverage this scenario to execute arbitrary code as root user. |
| A vulnerability has been identified in RUGGEDCOM ROX MX5000 (All versions < V2.17.0), RUGGEDCOM ROX MX5000RE (All versions < V2.17.0), RUGGEDCOM ROX RX1400 (All versions < V2.17.0), RUGGEDCOM ROX RX1500 (All versions < V2.17.0), RUGGEDCOM ROX RX1501 (All versions < V2.17.0), RUGGEDCOM ROX RX1510 (All versions < V2.17.0), RUGGEDCOM ROX RX1511 (All versions < V2.17.0), RUGGEDCOM ROX RX1512 (All versions < V2.17.0), RUGGEDCOM ROX RX1524 (All versions < V2.17.0), RUGGEDCOM ROX RX1536 (All versions < V2.17.0), RUGGEDCOM ROX RX5000 (All versions < V2.17.0). Due to the insufficient validation during the installation and load of certain configuration files of the affected device, an attacker could spawn a reverse shell and gain root access on the affected system. |
| A vulnerability has been identified in RUGGEDCOM ROX MX5000 (All versions < V2.17.0), RUGGEDCOM ROX MX5000RE (All versions < V2.17.0), RUGGEDCOM ROX RX1400 (All versions < V2.17.0), RUGGEDCOM ROX RX1500 (All versions < V2.17.0), RUGGEDCOM ROX RX1501 (All versions < V2.17.0), RUGGEDCOM ROX RX1510 (All versions < V2.17.0), RUGGEDCOM ROX RX1511 (All versions < V2.17.0), RUGGEDCOM ROX RX1512 (All versions < V2.17.0), RUGGEDCOM ROX RX1524 (All versions < V2.17.0), RUGGEDCOM ROX RX1536 (All versions < V2.17.0), RUGGEDCOM ROX RX5000 (All versions < V2.17.0). During the Dynamic DNS configuration of the affected product it is possible to inject additional configuration parameters. Under certain circumstances, an attacker could leverage this vulnerability to spawn a reverse shell and gain root access on the affected system. |
| A vulnerability has been identified in RUGGEDCOM ROX MX5000 (All versions < V2.17.0), RUGGEDCOM ROX MX5000RE (All versions < V2.17.0), RUGGEDCOM ROX RX1400 (All versions < V2.17.0), RUGGEDCOM ROX RX1500 (All versions < V2.17.0), RUGGEDCOM ROX RX1501 (All versions < V2.17.0), RUGGEDCOM ROX RX1510 (All versions < V2.17.0), RUGGEDCOM ROX RX1511 (All versions < V2.17.0), RUGGEDCOM ROX RX1512 (All versions < V2.17.0), RUGGEDCOM ROX RX1524 (All versions < V2.17.0), RUGGEDCOM ROX RX1536 (All versions < V2.17.0), RUGGEDCOM ROX RX5000 (All versions < V2.17.0). The DHCP Server configuration file of the affected products is subject to code injection. An attacker could leverage this vulnerability to spawn a reverse shell and gain root access on the affected system. |
| A vulnerability has been identified in Opcenter Execution Foundation (All versions < V2501.0001), Opcenter Intelligence (All versions < V2501.0001), Opcenter Quality (All versions < V2512), Opcenter RDnL (All versions < V2410), SIMATIC PCS neo V4.0 (All versions), SIMATIC PCS neo V4.1 (All versions < V4.1 Update 3), SIMATIC PCS neo V5.0 (All versions < V5.0 Update 1), SINEC NMS (All versions if operated in conjunction with UMC < V2.15), Totally Integrated Automation Portal (TIA Portal) V16 (All versions), Totally Integrated Automation Portal (TIA Portal) V17 (All versions), Totally Integrated Automation Portal (TIA Portal) V18 (All versions), Totally Integrated Automation Portal (TIA Portal) V19 (All versions). Affected products contain a heap-based buffer overflow vulnerability in the integrated UMC component.
This could allow an unauthenticated remote attacker to execute arbitrary code. |
| The affected setup component is vulnerable to DLL hijacking. This could allow an attacker to execute arbitrary code when a legitimate user installs an application that uses the affected setup component. |