| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
net: bcmgenet: Use stronger register read/writes to assure ordering
GCC12 appears to be much smarter about its dependency tracking and is
aware that the relaxed variants are just normal loads and stores and
this is causing problems like:
[ 210.074549] ------------[ cut here ]------------
[ 210.079223] NETDEV WATCHDOG: enabcm6e4ei0 (bcmgenet): transmit queue 1 timed out
[ 210.086717] WARNING: CPU: 1 PID: 0 at net/sched/sch_generic.c:529 dev_watchdog+0x234/0x240
[ 210.095044] Modules linked in: genet(E) nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat]
[ 210.146561] ACPI CPPC: PCC check channel failed for ss: 0. ret=-110
[ 210.146927] CPU: 1 PID: 0 Comm: swapper/1 Tainted: G E 5.17.0-rc7G12+ #58
[ 210.153226] CPPC Cpufreq:cppc_scale_freq_workfn: failed to read perf counters
[ 210.161349] Hardware name: Raspberry Pi Foundation Raspberry Pi 4 Model B/Raspberry Pi 4 Model B, BIOS EDK2-DEV 02/08/2022
[ 210.161353] pstate: 80400005 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 210.161358] pc : dev_watchdog+0x234/0x240
[ 210.161364] lr : dev_watchdog+0x234/0x240
[ 210.161368] sp : ffff8000080a3a40
[ 210.161370] x29: ffff8000080a3a40 x28: ffffcd425af87000 x27: ffff8000080a3b20
[ 210.205150] x26: ffffcd425aa00000 x25: 0000000000000001 x24: ffffcd425af8ec08
[ 210.212321] x23: 0000000000000100 x22: ffffcd425af87000 x21: ffff55b142688000
[ 210.219491] x20: 0000000000000001 x19: ffff55b1426884c8 x18: ffffffffffffffff
[ 210.226661] x17: 64656d6974203120 x16: 0000000000000001 x15: 6d736e617274203a
[ 210.233831] x14: 2974656e65676d63 x13: ffffcd4259c300d8 x12: ffffcd425b07d5f0
[ 210.241001] x11: 00000000ffffffff x10: ffffcd425b07d5f0 x9 : ffffcd4258bdad9c
[ 210.248171] x8 : 00000000ffffdfff x7 : 000000000000003f x6 : 0000000000000000
[ 210.255341] x5 : 0000000000000000 x4 : 0000000000000000 x3 : 0000000000001000
[ 210.262511] x2 : 0000000000001000 x1 : 0000000000000005 x0 : 0000000000000044
[ 210.269682] Call trace:
[ 210.272133] dev_watchdog+0x234/0x240
[ 210.275811] call_timer_fn+0x3c/0x15c
[ 210.279489] __run_timers.part.0+0x288/0x310
[ 210.283777] run_timer_softirq+0x48/0x80
[ 210.287716] __do_softirq+0x128/0x360
[ 210.291392] __irq_exit_rcu+0x138/0x140
[ 210.295243] irq_exit_rcu+0x1c/0x30
[ 210.298745] el1_interrupt+0x38/0x54
[ 210.302334] el1h_64_irq_handler+0x18/0x24
[ 210.306445] el1h_64_irq+0x7c/0x80
[ 210.309857] arch_cpu_idle+0x18/0x2c
[ 210.313445] default_idle_call+0x4c/0x140
[ 210.317470] cpuidle_idle_call+0x14c/0x1a0
[ 210.321584] do_idle+0xb0/0x100
[ 210.324737] cpu_startup_entry+0x30/0x8c
[ 210.328675] secondary_start_kernel+0xe4/0x110
[ 210.333138] __secondary_switched+0x94/0x98
The assumption when these were relaxed seems to be that device memory
would be mapped non reordering, and that other constructs
(spinlocks/etc) would provide the barriers to assure that packet data
and in memory rings/queues were ordered with respect to device
register reads/writes. This itself seems a bit sketchy, but the real
problem with GCC12 is that it is moving the actual reads/writes around
at will as though they were independent operations when in truth they
are not, but the compiler can't know that. When looking at the
assembly dumps for many of these routines its possible to see very
clean, but not strictly in program order operations occurring as the
compiler would be free to do if these weren't actually register
reads/write operations.
Its possible to suppress the timeout with a liberal bit of dma_mb()'s
sprinkled around but the device still seems unable to reliably
send/receive data. A better plan is to use the safer readl/writel
everywhere.
Since this partially reverts an older commit, which notes the use of
the relaxed variants for performance reasons. I would suggest that
any performance problems
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/nldev: Prevent underflow in nldev_stat_set_counter_dynamic_doit()
This code checks "index" for an upper bound but it does not check for
negatives. Change the type to unsigned to prevent underflows. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf, sockmap: Fix more uncharged while msg has more_data
In tcp_bpf_send_verdict(), if msg has more data after
tcp_bpf_sendmsg_redir():
tcp_bpf_send_verdict()
tosend = msg->sg.size //msg->sg.size = 22220
case __SK_REDIRECT:
sk_msg_return() //uncharged msg->sg.size(22220) sk->sk_forward_alloc
tcp_bpf_sendmsg_redir() //after tcp_bpf_sendmsg_redir, msg->sg.size=11000
goto more_data;
tosend = msg->sg.size //msg->sg.size = 11000
case __SK_REDIRECT:
sk_msg_return() //uncharged msg->sg.size(11000) to sk->sk_forward_alloc
The msg->sg.size(11000) has been uncharged twice, to fix we can charge the
remaining msg->sg.size before goto more data.
This issue can cause the following info:
WARNING: CPU: 0 PID: 9860 at net/core/stream.c:208 sk_stream_kill_queues+0xd4/0x1a0
Call Trace:
<TASK>
inet_csk_destroy_sock+0x55/0x110
__tcp_close+0x279/0x470
tcp_close+0x1f/0x60
inet_release+0x3f/0x80
__sock_release+0x3d/0xb0
sock_close+0x11/0x20
__fput+0x92/0x250
task_work_run+0x6a/0xa0
do_exit+0x33b/0xb60
do_group_exit+0x2f/0xa0
get_signal+0xb6/0x950
arch_do_signal_or_restart+0xac/0x2a0
? vfs_write+0x237/0x290
exit_to_user_mode_prepare+0xa9/0x200
syscall_exit_to_user_mode+0x12/0x30
do_syscall_64+0x46/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae
</TASK>
WARNING: CPU: 0 PID: 2136 at net/ipv4/af_inet.c:155 inet_sock_destruct+0x13c/0x260
Call Trace:
<TASK>
__sk_destruct+0x24/0x1f0
sk_psock_destroy+0x19b/0x1c0
process_one_work+0x1b3/0x3c0
worker_thread+0x30/0x350
? process_one_work+0x3c0/0x3c0
kthread+0xe6/0x110
? kthread_complete_and_exit+0x20/0x20
ret_from_fork+0x22/0x30
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: pm8001: Fix abort all task initialization
In pm80xx_send_abort_all(), the n_elem field of the ccb used is not
initialized to 0. This missing initialization sometimes lead to the task
completion path seeing the ccb with a non-zero n_elem resulting in the
execution of invalid dma_unmap_sg() calls in pm8001_ccb_task_free(),
causing a crash such as:
[ 197.676341] RIP: 0010:iommu_dma_unmap_sg+0x6d/0x280
[ 197.700204] RSP: 0018:ffff889bbcf89c88 EFLAGS: 00010012
[ 197.705485] RAX: dffffc0000000000 RBX: 0000000000000000 RCX: ffffffff83d0bda0
[ 197.712687] RDX: 0000000000000002 RSI: 0000000000000000 RDI: ffff88810dffc0d0
[ 197.719887] RBP: 0000000000000000 R08: 0000000000000000 R09: ffff8881c790098b
[ 197.727089] R10: ffffed1038f20131 R11: 0000000000000001 R12: 0000000000000000
[ 197.734296] R13: ffff88810dffc0d0 R14: 0000000000000010 R15: 0000000000000000
[ 197.741493] FS: 0000000000000000(0000) GS:ffff889bbcf80000(0000) knlGS:0000000000000000
[ 197.749659] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 197.755459] CR2: 00007f16c1b42734 CR3: 0000000004814000 CR4: 0000000000350ee0
[ 197.762656] Call Trace:
[ 197.765127] <IRQ>
[ 197.767162] pm8001_ccb_task_free+0x5f1/0x820 [pm80xx]
[ 197.772364] ? do_raw_spin_unlock+0x54/0x220
[ 197.776680] pm8001_mpi_task_abort_resp+0x2ce/0x4f0 [pm80xx]
[ 197.782406] process_oq+0xe85/0x7890 [pm80xx]
[ 197.786817] ? lock_acquire+0x194/0x490
[ 197.790697] ? handle_irq_event+0x10e/0x1b0
[ 197.794920] ? mpi_sata_completion+0x2d70/0x2d70 [pm80xx]
[ 197.800378] ? __wake_up_bit+0x100/0x100
[ 197.804340] ? lock_is_held_type+0x98/0x110
[ 197.808565] pm80xx_chip_isr+0x94/0x130 [pm80xx]
[ 197.813243] tasklet_action_common.constprop.0+0x24b/0x2f0
[ 197.818785] __do_softirq+0x1b5/0x82d
[ 197.822485] ? do_raw_spin_unlock+0x54/0x220
[ 197.826799] __irq_exit_rcu+0x17e/0x1e0
[ 197.830678] irq_exit_rcu+0xa/0x20
[ 197.834114] common_interrupt+0x78/0x90
[ 197.840051] </IRQ>
[ 197.844236] <TASK>
[ 197.848397] asm_common_interrupt+0x1e/0x40
Avoid this issue by always initializing the ccb n_elem field to 0 in
pm8001_send_abort_all(), pm8001_send_read_log() and
pm80xx_send_abort_all(). |
| In the Linux kernel, the following vulnerability has been resolved:
igc: avoid kernel warning when changing RX ring parameters
Calling ethtool changing the RX ring parameters like this:
$ ethtool -G eth0 rx 1024
on igc triggers kernel warnings like this:
[ 225.198467] ------------[ cut here ]------------
[ 225.198473] Missing unregister, handled but fix driver
[ 225.198485] WARNING: CPU: 7 PID: 959 at net/core/xdp.c:168
xdp_rxq_info_reg+0x79/0xd0
[...]
[ 225.198601] Call Trace:
[ 225.198604] <TASK>
[ 225.198609] igc_setup_rx_resources+0x3f/0xe0 [igc]
[ 225.198617] igc_ethtool_set_ringparam+0x30e/0x450 [igc]
[ 225.198626] ethnl_set_rings+0x18a/0x250
[ 225.198631] genl_family_rcv_msg_doit+0xca/0x110
[ 225.198637] genl_rcv_msg+0xce/0x1c0
[ 225.198640] ? rings_prepare_data+0x60/0x60
[ 225.198644] ? genl_get_cmd+0xd0/0xd0
[ 225.198647] netlink_rcv_skb+0x4e/0xf0
[ 225.198652] genl_rcv+0x24/0x40
[ 225.198655] netlink_unicast+0x20e/0x330
[ 225.198659] netlink_sendmsg+0x23f/0x480
[ 225.198663] sock_sendmsg+0x5b/0x60
[ 225.198667] __sys_sendto+0xf0/0x160
[ 225.198671] ? handle_mm_fault+0xb2/0x280
[ 225.198676] ? do_user_addr_fault+0x1eb/0x690
[ 225.198680] __x64_sys_sendto+0x20/0x30
[ 225.198683] do_syscall_64+0x38/0x90
[ 225.198687] entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 225.198693] RIP: 0033:0x7f7ae38ac3aa
igc_ethtool_set_ringparam() copies the igc_ring structure but neglects to
reset the xdp_rxq_info member before calling igc_setup_rx_resources().
This in turn calls xdp_rxq_info_reg() with an already registered xdp_rxq_info.
Make sure to unregister the xdp_rxq_info structure first in
igc_setup_rx_resources. |
| In the Linux kernel, the following vulnerability has been resolved:
net: asix: add proper error handling of usb read errors
Syzbot once again hit uninit value in asix driver. The problem still the
same -- asix_read_cmd() reads less bytes, than was requested by caller.
Since all read requests are performed via asix_read_cmd() let's catch
usb related error there and add __must_check notation to be sure all
callers actually check return value.
So, this patch adds sanity check inside asix_read_cmd(), that simply
checks if bytes read are not less, than was requested and adds missing
error handling of asix_read_cmd() all across the driver code. |
| In the Linux kernel, the following vulnerability has been resolved:
dax: make sure inodes are flushed before destroy cache
A bug can be triggered by following command
$ modprobe nd_pmem && modprobe -r nd_pmem
[ 10.060014] BUG dax_cache (Not tainted): Objects remaining in dax_cache on __kmem_cache_shutdown()
[ 10.060938] Slab 0x0000000085b729ac objects=9 used=1 fp=0x000000004f5ae469 flags=0x200000000010200(slab|head|node)
[ 10.062433] Call Trace:
[ 10.062673] dump_stack_lvl+0x34/0x44
[ 10.062865] slab_err+0x90/0xd0
[ 10.063619] __kmem_cache_shutdown+0x13b/0x2f0
[ 10.063848] kmem_cache_destroy+0x4a/0x110
[ 10.064058] __x64_sys_delete_module+0x265/0x300
This is caused by dax_fs_exit() not flushing inodes before destroy cache.
To fix this issue, call rcu_barrier() before destroy cache. |
| In the Linux kernel, the following vulnerability has been resolved:
ptp: unregister virtual clocks when unregistering physical clock.
When unregistering a physical clock which has some virtual clocks,
unregister the virtual clocks with it.
This fixes the following oops, which can be triggered by unloading
a driver providing a PTP clock when it has enabled virtual clocks:
BUG: unable to handle page fault for address: ffffffffc04fc4d8
Oops: 0000 [#1] PREEMPT SMP NOPTI
RIP: 0010:ptp_vclock_read+0x31/0xb0
Call Trace:
timecounter_read+0xf/0x50
ptp_vclock_refresh+0x2c/0x50
? ptp_clock_release+0x40/0x40
ptp_aux_kworker+0x17/0x30
kthread_worker_fn+0x9b/0x240
? kthread_should_park+0x30/0x30
kthread+0xe2/0x110
? kthread_complete_and_exit+0x20/0x20
ret_from_fork+0x22/0x30 |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: atmel: Add missing of_node_put() in at91sam9g20ek_audio_probe
This node pointer is returned by of_parse_phandle() with refcount
incremented in this function.
Calling of_node_put() to avoid the refcount leak. |
| In the Linux kernel, the following vulnerability has been resolved:
media: stk1160: If start stream fails, return buffers with VB2_BUF_STATE_QUEUED
If the callback 'start_streaming' fails, then all
queued buffers in the driver should be returned with
state 'VB2_BUF_STATE_QUEUED'. Currently, they are
returned with 'VB2_BUF_STATE_ERROR' which is wrong.
Fix this. This also fixes the warning:
[ 65.583633] WARNING: CPU: 5 PID: 593 at drivers/media/common/videobuf2/videobuf2-core.c:1612 vb2_start_streaming+0xd4/0x160 [videobuf2_common]
[ 65.585027] Modules linked in: snd_usb_audio snd_hwdep snd_usbmidi_lib snd_rawmidi snd_soc_hdmi_codec dw_hdmi_i2s_audio saa7115 stk1160 videobuf2_vmalloc videobuf2_memops videobuf2_v4l2 videobuf2_common videodev mc crct10dif_ce panfrost snd_soc_simple_card snd_soc_audio_graph_card snd_soc_spdif_tx snd_soc_simple_card_utils gpu_sched phy_rockchip_pcie snd_soc_rockchip_i2s rockchipdrm analogix_dp dw_mipi_dsi dw_hdmi cec drm_kms_helper drm rtc_rk808 rockchip_saradc industrialio_triggered_buffer kfifo_buf rockchip_thermal pcie_rockchip_host ip_tables x_tables ipv6
[ 65.589383] CPU: 5 PID: 593 Comm: v4l2src0:src Tainted: G W 5.16.0-rc4-62408-g32447129cb30-dirty #14
[ 65.590293] Hardware name: Radxa ROCK Pi 4B (DT)
[ 65.590696] pstate: 80000005 (Nzcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 65.591304] pc : vb2_start_streaming+0xd4/0x160 [videobuf2_common]
[ 65.591850] lr : vb2_start_streaming+0x6c/0x160 [videobuf2_common]
[ 65.592395] sp : ffff800012bc3ad0
[ 65.592685] x29: ffff800012bc3ad0 x28: 0000000000000000 x27: ffff800012bc3cd8
[ 65.593312] x26: 0000000000000000 x25: ffff00000d8a7800 x24: 0000000040045612
[ 65.593938] x23: ffff800011323000 x22: ffff800012bc3cd8 x21: ffff00000908a8b0
[ 65.594562] x20: ffff00000908a8c8 x19: 00000000fffffff4 x18: ffffffffffffffff
[ 65.595188] x17: 000000040044ffff x16: 00400034b5503510 x15: ffff800011323f78
[ 65.595813] x14: ffff000013163886 x13: ffff000013163885 x12: 00000000000002ce
[ 65.596439] x11: 0000000000000028 x10: 0000000000000001 x9 : 0000000000000228
[ 65.597064] x8 : 0101010101010101 x7 : 7f7f7f7f7f7f7f7f x6 : fefefeff726c5e78
[ 65.597690] x5 : ffff800012bc3990 x4 : 0000000000000000 x3 : ffff000009a34880
[ 65.598315] x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff000007cd99f0
[ 65.598940] Call trace:
[ 65.599155] vb2_start_streaming+0xd4/0x160 [videobuf2_common]
[ 65.599672] vb2_core_streamon+0x17c/0x1a8 [videobuf2_common]
[ 65.600179] vb2_streamon+0x54/0x88 [videobuf2_v4l2]
[ 65.600619] vb2_ioctl_streamon+0x54/0x60 [videobuf2_v4l2]
[ 65.601103] v4l_streamon+0x3c/0x50 [videodev]
[ 65.601521] __video_do_ioctl+0x1a4/0x428 [videodev]
[ 65.601977] video_usercopy+0x320/0x828 [videodev]
[ 65.602419] video_ioctl2+0x3c/0x58 [videodev]
[ 65.602830] v4l2_ioctl+0x60/0x90 [videodev]
[ 65.603227] __arm64_sys_ioctl+0xa8/0xe0
[ 65.603576] invoke_syscall+0x54/0x118
[ 65.603911] el0_svc_common.constprop.3+0x84/0x100
[ 65.604332] do_el0_svc+0x34/0xa0
[ 65.604625] el0_svc+0x1c/0x50
[ 65.604897] el0t_64_sync_handler+0x88/0xb0
[ 65.605264] el0t_64_sync+0x16c/0x170
[ 65.605587] ---[ end trace 578e0ba07742170d ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
block: don't delete queue kobject before its children
kobjects aren't supposed to be deleted before their child kobjects are
deleted. Apparently this is usually benign; however, a WARN will be
triggered if one of the child kobjects has a named attribute group:
sysfs group 'modes' not found for kobject 'crypto'
WARNING: CPU: 0 PID: 1 at fs/sysfs/group.c:278 sysfs_remove_group+0x72/0x80
...
Call Trace:
sysfs_remove_groups+0x29/0x40 fs/sysfs/group.c:312
__kobject_del+0x20/0x80 lib/kobject.c:611
kobject_cleanup+0xa4/0x140 lib/kobject.c:696
kobject_release lib/kobject.c:736 [inline]
kref_put include/linux/kref.h:65 [inline]
kobject_put+0x53/0x70 lib/kobject.c:753
blk_crypto_sysfs_unregister+0x10/0x20 block/blk-crypto-sysfs.c:159
blk_unregister_queue+0xb0/0x110 block/blk-sysfs.c:962
del_gendisk+0x117/0x250 block/genhd.c:610
Fix this by moving the kobject_del() and the corresponding
kobject_uevent() to the correct place. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix missing free nid in f2fs_handle_failed_inode
This patch fixes xfstests/generic/475 failure.
[ 293.680694] F2FS-fs (dm-1): May loss orphan inode, run fsck to fix.
[ 293.685358] Buffer I/O error on dev dm-1, logical block 8388592, async page read
[ 293.691527] Buffer I/O error on dev dm-1, logical block 8388592, async page read
[ 293.691764] sh (7615): drop_caches: 3
[ 293.691819] sh (7616): drop_caches: 3
[ 293.694017] Buffer I/O error on dev dm-1, logical block 1, async page read
[ 293.695659] sh (7618): drop_caches: 3
[ 293.696979] sh (7617): drop_caches: 3
[ 293.700290] sh (7623): drop_caches: 3
[ 293.708621] sh (7626): drop_caches: 3
[ 293.711386] sh (7628): drop_caches: 3
[ 293.711825] sh (7627): drop_caches: 3
[ 293.716738] sh (7630): drop_caches: 3
[ 293.719613] sh (7632): drop_caches: 3
[ 293.720971] sh (7633): drop_caches: 3
[ 293.727741] sh (7634): drop_caches: 3
[ 293.730783] sh (7636): drop_caches: 3
[ 293.732681] sh (7635): drop_caches: 3
[ 293.732988] sh (7637): drop_caches: 3
[ 293.738836] sh (7639): drop_caches: 3
[ 293.740568] sh (7641): drop_caches: 3
[ 293.743053] sh (7640): drop_caches: 3
[ 293.821889] ------------[ cut here ]------------
[ 293.824654] kernel BUG at fs/f2fs/node.c:3334!
[ 293.826226] invalid opcode: 0000 [#1] PREEMPT SMP PTI
[ 293.828713] CPU: 0 PID: 7653 Comm: umount Tainted: G OE 5.17.0-rc1-custom #1
[ 293.830946] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
[ 293.832526] RIP: 0010:f2fs_destroy_node_manager+0x33f/0x350 [f2fs]
[ 293.833905] Code: e8 d6 3d f9 f9 48 8b 45 d0 65 48 2b 04 25 28 00 00 00 75 1a 48 81 c4 28 03 00 00 5b 41 5c 41 5d 41 5e 41 5f 5d c3 0f 0b
[ 293.837783] RSP: 0018:ffffb04ec31e7a20 EFLAGS: 00010202
[ 293.839062] RAX: 0000000000000001 RBX: ffff9df947db2eb8 RCX: 0000000080aa0072
[ 293.840666] RDX: 0000000000000000 RSI: ffffe86c0432a140 RDI: ffffffffc0b72a21
[ 293.842261] RBP: ffffb04ec31e7d70 R08: ffff9df94ca85780 R09: 0000000080aa0072
[ 293.843909] R10: ffff9df94ca85700 R11: ffff9df94e1ccf58 R12: ffff9df947db2e00
[ 293.845594] R13: ffff9df947db2ed0 R14: ffff9df947db2eb8 R15: ffff9df947db2eb8
[ 293.847855] FS: 00007f5a97379800(0000) GS:ffff9dfa77c00000(0000) knlGS:0000000000000000
[ 293.850647] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 293.852940] CR2: 00007f5a97528730 CR3: 000000010bc76005 CR4: 0000000000370ef0
[ 293.854680] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 293.856423] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 293.858380] Call Trace:
[ 293.859302] <TASK>
[ 293.860311] ? ttwu_do_wakeup+0x1c/0x170
[ 293.861800] ? ttwu_do_activate+0x6d/0xb0
[ 293.863057] ? _raw_spin_unlock_irqrestore+0x29/0x40
[ 293.864411] ? try_to_wake_up+0x9d/0x5e0
[ 293.865618] ? debug_smp_processor_id+0x17/0x20
[ 293.866934] ? debug_smp_processor_id+0x17/0x20
[ 293.868223] ? free_unref_page+0xbf/0x120
[ 293.869470] ? __free_slab+0xcb/0x1c0
[ 293.870614] ? preempt_count_add+0x7a/0xc0
[ 293.871811] ? __slab_free+0xa0/0x2d0
[ 293.872918] ? __wake_up_common_lock+0x8a/0xc0
[ 293.874186] ? __slab_free+0xa0/0x2d0
[ 293.875305] ? free_inode_nonrcu+0x20/0x20
[ 293.876466] ? free_inode_nonrcu+0x20/0x20
[ 293.877650] ? debug_smp_processor_id+0x17/0x20
[ 293.878949] ? call_rcu+0x11a/0x240
[ 293.880060] ? f2fs_destroy_stats+0x59/0x60 [f2fs]
[ 293.881437] ? kfree+0x1fe/0x230
[ 293.882674] f2fs_put_super+0x160/0x390 [f2fs]
[ 293.883978] generic_shutdown_super+0x7a/0x120
[ 293.885274] kill_block_super+0x27/0x50
[ 293.886496] kill_f2fs_super+0x7f/0x100 [f2fs]
[ 293.887806] deactivate_locked_super+0x35/0xa0
[ 293.889271] deactivate_super+0x40/0x50
[ 293.890513] cleanup_mnt+0x139/0x190
[ 293.891689] __cleanup_mnt+0x12/0x20
[ 293.892850] task_work_run+0x64/0xa0
[ 293.894035] exit_to_user_mode_prepare+0x1b7/
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: hisilicon/sec - fix the aead software fallback for engine
Due to the subreq pointer misuse the private context memory. The aead
soft crypto occasionally casues the OS panic as setting the 64K page.
Here is fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
exec: Force single empty string when argv is empty
Quoting[1] Ariadne Conill:
"In several other operating systems, it is a hard requirement that the
second argument to execve(2) be the name of a program, thus prohibiting
a scenario where argc < 1. POSIX 2017 also recommends this behaviour,
but it is not an explicit requirement[2]:
The argument arg0 should point to a filename string that is
associated with the process being started by one of the exec
functions.
...
Interestingly, Michael Kerrisk opened an issue about this in 2008[3],
but there was no consensus to support fixing this issue then.
Hopefully now that CVE-2021-4034 shows practical exploitative use[4]
of this bug in a shellcode, we can reconsider.
This issue is being tracked in the KSPP issue tracker[5]."
While the initial code searches[6][7] turned up what appeared to be
mostly corner case tests, trying to that just reject argv == NULL
(or an immediately terminated pointer list) quickly started tripping[8]
existing userspace programs.
The next best approach is forcing a single empty string into argv and
adjusting argc to match. The number of programs depending on argc == 0
seems a smaller set than those calling execve with a NULL argv.
Account for the additional stack space in bprm_stack_limits(). Inject an
empty string when argc == 0 (and set argc = 1). Warn about the case so
userspace has some notice about the change:
process './argc0' launched './argc0' with NULL argv: empty string added
Additionally WARN() and reject NULL argv usage for kernel threads.
[1] https://lore.kernel.org/lkml/20220127000724.15106-1-ariadne@dereferenced.org/
[2] https://pubs.opengroup.org/onlinepubs/9699919799/functions/exec.html
[3] https://bugzilla.kernel.org/show_bug.cgi?id=8408
[4] https://www.qualys.com/2022/01/25/cve-2021-4034/pwnkit.txt
[5] https://github.com/KSPP/linux/issues/176
[6] https://codesearch.debian.net/search?q=execve%5C+*%5C%28%5B%5E%2C%5D%2B%2C+*NULL&literal=0
[7] https://codesearch.debian.net/search?q=execlp%3F%5Cs*%5C%28%5B%5E%2C%5D%2B%2C%5Cs*NULL&literal=0
[8] https://lore.kernel.org/lkml/20220131144352.GE16385@xsang-OptiPlex-9020/ |
| In the Linux kernel, the following vulnerability has been resolved:
PM: domains: Fix sleep-in-atomic bug caused by genpd_debug_remove()
When a genpd with GENPD_FLAG_IRQ_SAFE gets removed, the following
sleep-in-atomic bug will be seen, as genpd_debug_remove() will be called
with a spinlock being held.
[ 0.029183] BUG: sleeping function called from invalid context at kernel/locking/rwsem.c:1460
[ 0.029204] in_atomic(): 1, irqs_disabled(): 128, non_block: 0, pid: 1, name: swapper/0
[ 0.029219] preempt_count: 1, expected: 0
[ 0.029230] CPU: 1 PID: 1 Comm: swapper/0 Not tainted 5.17.0-rc4+ #489
[ 0.029245] Hardware name: Thundercomm TurboX CM2290 (DT)
[ 0.029256] Call trace:
[ 0.029265] dump_backtrace.part.0+0xbc/0xd0
[ 0.029285] show_stack+0x3c/0xa0
[ 0.029298] dump_stack_lvl+0x7c/0xa0
[ 0.029311] dump_stack+0x18/0x34
[ 0.029323] __might_resched+0x10c/0x13c
[ 0.029338] __might_sleep+0x4c/0x80
[ 0.029351] down_read+0x24/0xd0
[ 0.029363] lookup_one_len_unlocked+0x9c/0xcc
[ 0.029379] lookup_positive_unlocked+0x10/0x50
[ 0.029392] debugfs_lookup+0x68/0xac
[ 0.029406] genpd_remove.part.0+0x12c/0x1b4
[ 0.029419] of_genpd_remove_last+0xa8/0xd4
[ 0.029434] psci_cpuidle_domain_probe+0x174/0x53c
[ 0.029449] platform_probe+0x68/0xe0
[ 0.029462] really_probe+0x190/0x430
[ 0.029473] __driver_probe_device+0x90/0x18c
[ 0.029485] driver_probe_device+0x40/0xe0
[ 0.029497] __driver_attach+0xf4/0x1d0
[ 0.029508] bus_for_each_dev+0x70/0xd0
[ 0.029523] driver_attach+0x24/0x30
[ 0.029534] bus_add_driver+0x164/0x22c
[ 0.029545] driver_register+0x78/0x130
[ 0.029556] __platform_driver_register+0x28/0x34
[ 0.029569] psci_idle_init_domains+0x1c/0x28
[ 0.029583] do_one_initcall+0x50/0x1b0
[ 0.029595] kernel_init_freeable+0x214/0x280
[ 0.029609] kernel_init+0x2c/0x13c
[ 0.029622] ret_from_fork+0x10/0x20
It doesn't seem necessary to call genpd_debug_remove() with the lock, so
move it out from locking to fix the problem. |
| In the Linux kernel, the following vulnerability has been resolved:
block: fix rq-qos breakage from skipping rq_qos_done_bio()
a647a524a467 ("block: don't call rq_qos_ops->done_bio if the bio isn't
tracked") made bio_endio() skip rq_qos_done_bio() if BIO_TRACKED is not set.
While this fixed a potential oops, it also broke blk-iocost by skipping the
done_bio callback for merged bios.
Before, whether a bio goes through rq_qos_throttle() or rq_qos_merge(),
rq_qos_done_bio() would be called on the bio on completion with BIO_TRACKED
distinguishing the former from the latter. rq_qos_done_bio() is not called
for bios which wenth through rq_qos_merge(). This royally confuses
blk-iocost as the merged bios never finish and are considered perpetually
in-flight.
One reliably reproducible failure mode is an intermediate cgroup geting
stuck active preventing its children from being activated due to the
leaf-only rule, leading to loss of control. The following is from
resctl-bench protection scenario which emulates isolating a web server like
workload from a memory bomb run on an iocost configuration which should
yield a reasonable level of protection.
# cat /sys/block/nvme2n1/device/model
Samsung SSD 970 PRO 512GB
# cat /sys/fs/cgroup/io.cost.model
259:0 ctrl=user model=linear rbps=834913556 rseqiops=93622 rrandiops=102913 wbps=618985353 wseqiops=72325 wrandiops=71025
# cat /sys/fs/cgroup/io.cost.qos
259:0 enable=1 ctrl=user rpct=95.00 rlat=18776 wpct=95.00 wlat=8897 min=60.00 max=100.00
# resctl-bench -m 29.6G -r out.json run protection::scenario=mem-hog,loops=1
...
Memory Hog Summary
==================
IO Latency: R p50=242u:336u/2.5m p90=794u:1.4m/7.5m p99=2.7m:8.0m/62.5m max=8.0m:36.4m/350m
W p50=221u:323u/1.5m p90=709u:1.2m/5.5m p99=1.5m:2.5m/9.5m max=6.9m:35.9m/350m
Isolation and Request Latency Impact Distributions:
min p01 p05 p10 p25 p50 p75 p90 p95 p99 max mean stdev
isol% 15.90 15.90 15.90 40.05 57.24 59.07 60.01 74.63 74.63 90.35 90.35 58.12 15.82
lat-imp% 0 0 0 0 0 4.55 14.68 15.54 233.5 548.1 548.1 53.88 143.6
Result: isol=58.12:15.82% lat_imp=53.88%:143.6 work_csv=100.0% missing=3.96%
The isolation result of 58.12% is close to what this device would show
without any IO control.
Fix it by introducing a new flag BIO_QOS_MERGED to mark merged bios and
calling rq_qos_done_bio() on them too. For consistency and clarity, rename
BIO_TRACKED to BIO_QOS_THROTTLED. The flag checks are moved into
rq_qos_done_bio() so that it's next to the code paths that set the flags.
With the patch applied, the above same benchmark shows:
# resctl-bench -m 29.6G -r out.json run protection::scenario=mem-hog,loops=1
...
Memory Hog Summary
==================
IO Latency: R p50=123u:84.4u/985u p90=322u:256u/2.5m p99=1.6m:1.4m/9.5m max=11.1m:36.0m/350m
W p50=429u:274u/995u p90=1.7m:1.3m/4.5m p99=3.4m:2.7m/11.5m max=7.9m:5.9m/26.5m
Isolation and Request Latency Impact Distributions:
min p01 p05 p10 p25 p50 p75 p90 p95 p99 max mean stdev
isol% 84.91 84.91 89.51 90.73 92.31 94.49 96.36 98.04 98.71 100.0 100.0 94.42 2.81
lat-imp% 0 0 0 0 0 2.81 5.73 11.11 13.92 17.53 22.61 4.10 4.68
Result: isol=94.42:2.81% lat_imp=4.10%:4.68 work_csv=58.34% missing=0% |
| In the Linux kernel, the following vulnerability has been resolved:
mmc: core: use sysfs_emit() instead of sprintf()
sprintf() (still used in the MMC core for the sysfs output) is vulnerable
to the buffer overflow. Use the new-fangled sysfs_emit() instead.
Found by Linux Verification Center (linuxtesting.org) with the SVACE static
analysis tool. |
| In the Linux kernel, the following vulnerability has been resolved:
can: isotp: sanitize CAN ID checks in isotp_bind()
Syzbot created an environment that lead to a state machine status that
can not be reached with a compliant CAN ID address configuration.
The provided address information consisted of CAN ID 0x6000001 and 0xC28001
which both boil down to 11 bit CAN IDs 0x001 in sending and receiving.
Sanitize the SFF/EFF CAN ID values before performing the address checks. |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: fix handlecache and multiuser
In multiuser each individual user has their own tcon structure for the
share and thus their own handle for a cached directory.
When we umount such a share we much make sure to release the pinned down dentry
for each such tcon and not just the master tcon.
Otherwise we will get nasty warnings on umount that dentries are still in use:
[ 3459.590047] BUG: Dentry 00000000115c6f41{i=12000000019d95,n=/} still in use\
(2) [unmount of cifs cifs]
...
[ 3459.590492] Call Trace:
[ 3459.590500] d_walk+0x61/0x2a0
[ 3459.590518] ? shrink_lock_dentry.part.0+0xe0/0xe0
[ 3459.590526] shrink_dcache_for_umount+0x49/0x110
[ 3459.590535] generic_shutdown_super+0x1a/0x110
[ 3459.590542] kill_anon_super+0x14/0x30
[ 3459.590549] cifs_kill_sb+0xf5/0x104 [cifs]
[ 3459.590773] deactivate_locked_super+0x36/0xa0
[ 3459.590782] cleanup_mnt+0x131/0x190
[ 3459.590789] task_work_run+0x5c/0x90
[ 3459.590798] exit_to_user_mode_loop+0x151/0x160
[ 3459.590809] exit_to_user_mode_prepare+0x83/0xd0
[ 3459.590818] syscall_exit_to_user_mode+0x12/0x30
[ 3459.590828] do_syscall_64+0x48/0x90
[ 3459.590833] entry_SYSCALL_64_after_hwframe+0x44/0xae |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: initialize registers in nft_do_chain()
Initialize registers to avoid stack leak into userspace. |