| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Linux PV device frontends vulnerable to attacks by backends T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Several Linux PV device frontends are using the grant table interfaces for removing access rights of the backends in ways being subject to race conditions, resulting in potential data leaks, data corruption by malicious backends, and denial of service triggered by malicious backends: blkfront, netfront, scsifront and the gntalloc driver are testing whether a grant reference is still in use. If this is not the case, they assume that a following removal of the granted access will always succeed, which is not true in case the backend has mapped the granted page between those two operations. As a result the backend can keep access to the memory page of the guest no matter how the page will be used after the frontend I/O has finished. The xenbus driver has a similar problem, as it doesn't check the success of removing the granted access of a shared ring buffer. blkfront: CVE-2022-23036 netfront: CVE-2022-23037 scsifront: CVE-2022-23038 gntalloc: CVE-2022-23039 xenbus: CVE-2022-23040 blkfront, netfront, scsifront, usbfront, dmabuf, xenbus, 9p, kbdfront, and pvcalls are using a functionality to delay freeing a grant reference until it is no longer in use, but the freeing of the related data page is not synchronized with dropping the granted access. As a result the backend can keep access to the memory page even after it has been freed and then re-used for a different purpose. CVE-2022-23041 netfront will fail a BUG_ON() assertion if it fails to revoke access in the rx path. This will result in a Denial of Service (DoS) situation of the guest which can be triggered by the backend. CVE-2022-23042 |
| Linux PV device frontends vulnerable to attacks by backends T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Several Linux PV device frontends are using the grant table interfaces for removing access rights of the backends in ways being subject to race conditions, resulting in potential data leaks, data corruption by malicious backends, and denial of service triggered by malicious backends: blkfront, netfront, scsifront and the gntalloc driver are testing whether a grant reference is still in use. If this is not the case, they assume that a following removal of the granted access will always succeed, which is not true in case the backend has mapped the granted page between those two operations. As a result the backend can keep access to the memory page of the guest no matter how the page will be used after the frontend I/O has finished. The xenbus driver has a similar problem, as it doesn't check the success of removing the granted access of a shared ring buffer. blkfront: CVE-2022-23036 netfront: CVE-2022-23037 scsifront: CVE-2022-23038 gntalloc: CVE-2022-23039 xenbus: CVE-2022-23040 blkfront, netfront, scsifront, usbfront, dmabuf, xenbus, 9p, kbdfront, and pvcalls are using a functionality to delay freeing a grant reference until it is no longer in use, but the freeing of the related data page is not synchronized with dropping the granted access. As a result the backend can keep access to the memory page even after it has been freed and then re-used for a different purpose. CVE-2022-23041 netfront will fail a BUG_ON() assertion if it fails to revoke access in the rx path. This will result in a Denial of Service (DoS) situation of the guest which can be triggered by the backend. CVE-2022-23042 |
| On BIG-IP version 16.x before 16.1.0, 15.1.x before 15.1.4.1, 14.1.x before 14.1.4.4, and all versions of 13.1.x, 12.1.x, and 11.6.x, when a FastL4 profile is configured on a virtual server, undisclosed traffic can cause an increase in memory resource utilization. Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated. |
| memory corruption in Kernel due to race condition while getting mapping reference in Snapdragon Compute, Snapdragon Connectivity, Snapdragon Industrial IOT, Snapdragon Mobile |
| Memory corruption or temporary denial of service due to improper handling of concurrent hypervisor operations to attach or detach IRQs from virtual interrupt sources in Snapdragon Compute, Snapdragon Connectivity, Snapdragon Industrial IOT, Snapdragon Mobile |
| Use after free in graphics fence due to a race condition while closing fence file descriptor and destroy graphics timeline simultaneously in Snapdragon Auto, Snapdragon Compute, Snapdragon Connectivity, Snapdragon Industrial IOT, Snapdragon Mobile, Snapdragon Wearables |
| In audio ipi, there is a possible memory corruption due to a race condition. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation. Patch ID: ALPS06478101; Issue ID: ALPS06478101. |
| In MDP, there is a possible use after free due to a race condition. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation. Patch ID: ALPS06545450; Issue ID: ALPS06545450. |
| In TEEI driver, there is a possible use after free due to a race condition. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation. Patch ID: ALPS06641447; Issue ID: ALPS06641447. |
| In TEEI driver, there is a possible use after free due to a race condition. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation. Patch ID: ALPS06641388; Issue ID: ALPS06641388. |
| In TEEI driver, there is a possible type confusion due to a race condition. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation. Patch ID: ALPS06493842; Issue ID: ALPS06493842. |
| In GED driver, there is a possible use after free due to a race condition. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation. Patch ID: ALPS06641585; Issue ID: ALPS06641585. |
| A vulnerability in the web-based management interface of Cisco BroadWorks CommPilot application could allow an unauthenticated, remote attacker to perform a server-side request forgery (SSRF) attack on an affected device.
This vulnerability is due to insufficient validation of user-supplied input. An attacker could exploit this vulnerability by sending a crafted HTTP request to the web interface. A successful exploit could allow the attacker to obtain confidential information from the BroadWorks server and other device on the network.
{{value}} ["%7b%7bvalue%7d%7d"])}]]
|
| Multiple vulnerabilities in Cisco Nexus Dashboard could allow an authenticated, local attacker to elevate privileges on an affected device. These vulnerabilities are due to insufficient input validation during CLI command execution on an affected device. An attacker could exploit these vulnerabilities by authenticating as the rescue-user and executing vulnerable CLI commands using a malicious payload. A successful exploit could allow the attacker to elevate privileges to root on an affected device. |
| Multiple vulnerabilities in Cisco Nexus Dashboard could allow an authenticated, local attacker to elevate privileges on an affected device. These vulnerabilities are due to insufficient input validation during CLI command execution on an affected device. An attacker could exploit these vulnerabilities by authenticating as the rescue-user and executing vulnerable CLI commands using a malicious payload. A successful exploit could allow the attacker to elevate privileges to root on an affected device. |
| Multiple vulnerabilities in Cisco Nexus Dashboard could allow an authenticated, local attacker to elevate privileges on an affected device. These vulnerabilities are due to insufficient input validation during CLI command execution on an affected device. An attacker could exploit these vulnerabilities by authenticating as the rescue-user and executing vulnerable CLI commands using a malicious payload. A successful exploit could allow the attacker to elevate privileges to root on an affected device. |
| Multiple vulnerabilities in Cisco Nexus Dashboard could allow an authenticated, local attacker to elevate privileges on an affected device. These vulnerabilities are due to insufficient input validation during CLI command execution on an affected device. An attacker could exploit these vulnerabilities by authenticating as the rescue-user and executing vulnerable CLI commands using a malicious payload. A successful exploit could allow the attacker to elevate privileges to root on an affected device. |
| A vulnerability in the database user privileges of Cisco Unified Communications Manager (Unified CM), Cisco Unified Communications Manager Session Management Edition (Unified CM SME), and Cisco Unified Communications Manager IM & Presence Service (Unified CM IM&P) could allow an authenticated, remote attacker to read arbitrary files on the underlying operating system of an affected device. This vulnerability is due to insufficient file permission restrictions. An attacker could exploit this vulnerability by sending a crafted command from the API to the application. A successful exploit could allow the attacker to read arbitrary files on the underlying operating system of the affected device. The attacker would need valid user credentials to exploit this vulnerability. |
| Multiple vulnerabilities in the Cisco IOx application hosting environment on multiple Cisco platforms could allow an attacker to inject arbitrary commands into the underlying host operating system, execute arbitrary code on the underlying host operating system, install applications without being authenticated, or conduct a cross-site scripting (XSS) attack against a user of the affected software. For more information about these vulnerabilities, see the Details section of this advisory. |
| In st21nfc_loc_set_polaritymode of fc/st21nfc.c, there is a possible use after free due to a race condition. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android kernelAndroid ID: A-208269510References: N/A |