| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
binder: fix freeze UAF in binder_release_work()
When a binder reference is cleaned up, any freeze work queued in the
associated process should also be removed. Otherwise, the reference is
freed while its ref->freeze.work is still queued in proc->work leading
to a use-after-free issue as shown by the following KASAN report:
==================================================================
BUG: KASAN: slab-use-after-free in binder_release_work+0x398/0x3d0
Read of size 8 at addr ffff31600ee91488 by task kworker/5:1/211
CPU: 5 UID: 0 PID: 211 Comm: kworker/5:1 Not tainted 6.11.0-rc7-00382-gfc6c92196396 #22
Hardware name: linux,dummy-virt (DT)
Workqueue: events binder_deferred_func
Call trace:
binder_release_work+0x398/0x3d0
binder_deferred_func+0xb60/0x109c
process_one_work+0x51c/0xbd4
worker_thread+0x608/0xee8
Allocated by task 703:
__kmalloc_cache_noprof+0x130/0x280
binder_thread_write+0xdb4/0x42a0
binder_ioctl+0x18f0/0x25ac
__arm64_sys_ioctl+0x124/0x190
invoke_syscall+0x6c/0x254
Freed by task 211:
kfree+0xc4/0x230
binder_deferred_func+0xae8/0x109c
process_one_work+0x51c/0xbd4
worker_thread+0x608/0xee8
==================================================================
This commit fixes the issue by ensuring any queued freeze work is removed
when cleaning up a binder reference. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: fix use-after-free in ath12k_dp_cc_cleanup()
During ath12k module removal, in ath12k_core_deinit(),
ath12k_mac_destroy() un-registers ah->hw from mac80211 and frees
the ah->hw as well as all the ar's in it. After this
ath12k_core_soc_destroy()-> ath12k_dp_free()-> ath12k_dp_cc_cleanup()
tries to access one of the freed ar's from pending skb.
This is because during mac destroy, driver failed to flush few
data packets, which were accessed later in ath12k_dp_cc_cleanup()
and freed, but using ar from the packet led to this use-after-free.
BUG: KASAN: use-after-free in ath12k_dp_cc_cleanup.part.0+0x5e2/0xd40 [ath12k]
Write of size 4 at addr ffff888150bd3514 by task modprobe/8926
CPU: 0 UID: 0 PID: 8926 Comm: modprobe Not tainted
6.11.0-rc2-wt-ath+ #1746
Hardware name: Intel(R) Client Systems NUC8i7HVK/NUC8i7HVB, BIOS
HNKBLi70.86A.0067.2021.0528.1339 05/28/2021
Call Trace:
<TASK>
dump_stack_lvl+0x7d/0xe0
print_address_description.constprop.0+0x33/0x3a0
print_report+0xb5/0x260
? kasan_addr_to_slab+0x24/0x80
kasan_report+0xd8/0x110
? ath12k_dp_cc_cleanup.part.0+0x5e2/0xd40 [ath12k]
? ath12k_dp_cc_cleanup.part.0+0x5e2/0xd40 [ath12k]
kasan_check_range+0xf3/0x1a0
__kasan_check_write+0x14/0x20
ath12k_dp_cc_cleanup.part.0+0x5e2/0xd40 [ath12k]
ath12k_dp_free+0x178/0x420 [ath12k]
ath12k_core_stop+0x176/0x200 [ath12k]
ath12k_core_deinit+0x13f/0x210 [ath12k]
ath12k_pci_remove+0xad/0x1c0 [ath12k]
pci_device_remove+0x9b/0x1b0
device_remove+0xbf/0x150
device_release_driver_internal+0x3c3/0x580
? __kasan_check_read+0x11/0x20
driver_detach+0xc4/0x190
bus_remove_driver+0x130/0x2a0
driver_unregister+0x68/0x90
pci_unregister_driver+0x24/0x240
? find_module_all+0x13e/0x1e0
ath12k_pci_exit+0x10/0x20 [ath12k]
__do_sys_delete_module+0x32c/0x580
? module_flags+0x2f0/0x2f0
? kmem_cache_free+0xf0/0x410
? __fput+0x56f/0xab0
? __fput+0x56f/0xab0
? debug_smp_processor_id+0x17/0x20
__x64_sys_delete_module+0x4f/0x70
x64_sys_call+0x522/0x9f0
do_syscall_64+0x64/0x130
entry_SYSCALL_64_after_hwframe+0x4b/0x53
RIP: 0033:0x7f8182c6ac8b
Commit 24de1b7b231c ("wifi: ath12k: fix flush failure in recovery
scenarios") added the change to decrement the pending packets count
in case of recovery which make sense as ah->hw as well all
ar's in it are intact during recovery, but during core deinit there
is no use in decrementing packets count or waking up the empty waitq
as the module is going to be removed also ar's from pending skb's
can't be used and the packets should just be released back.
To fix this, avoid accessing ar from skb->cb when driver is being
unregistered.
Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.1.1-00214-QCAHKSWPL_SILICONZ-1
Tested-on: WCN7850 hw2.0 PCI WLAN.HMT.1.0.c5-00481-QCAHMTSWPL_V1.0_V2.0_SILICONZ-3 |
| In the Linux kernel, the following vulnerability has been resolved:
drm: zynqmp_kms: Unplug DRM device before removal
Prevent userspace accesses to the DRM device from causing
use-after-frees by unplugging the device before we remove it. This
causes any further userspace accesses to result in an error without
further calls into this driver's internals. |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/s390: Implement blocking domain
This fixes a crash when surprise hot-unplugging a PCI device. This crash
happens because during hot-unplug __iommu_group_set_domain_nofail()
attaching the default domain fails when the platform no longer
recognizes the device as it has already been removed and we end up with
a NULL domain pointer and UAF. This is exactly the case referred to in
the second comment in __iommu_device_set_domain() and just as stated
there if we can instead attach the blocking domain the UAF is prevented
as this can handle the already removed device. Implement the blocking
domain to use this handling. With this change, the crash is fixed but
we still hit a warning attempting to change DMA ownership on a blocked
device. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix race in concurrent f2fs_stop_gc_thread
In my test case, concurrent calls to f2fs shutdown report the following
stack trace:
Oops: general protection fault, probably for non-canonical address 0xc6cfff63bb5513fc: 0000 [#1] PREEMPT SMP PTI
CPU: 0 UID: 0 PID: 678 Comm: f2fs_rep_shutdo Not tainted 6.12.0-rc5-next-20241029-g6fb2fa9805c5-dirty #85
Call Trace:
<TASK>
? show_regs+0x8b/0xa0
? __die_body+0x26/0xa0
? die_addr+0x54/0x90
? exc_general_protection+0x24b/0x5c0
? asm_exc_general_protection+0x26/0x30
? kthread_stop+0x46/0x390
f2fs_stop_gc_thread+0x6c/0x110
f2fs_do_shutdown+0x309/0x3a0
f2fs_ioc_shutdown+0x150/0x1c0
__f2fs_ioctl+0xffd/0x2ac0
f2fs_ioctl+0x76/0xe0
vfs_ioctl+0x23/0x60
__x64_sys_ioctl+0xce/0xf0
x64_sys_call+0x2b1b/0x4540
do_syscall_64+0xa7/0x240
entry_SYSCALL_64_after_hwframe+0x76/0x7e
The root cause is a race condition in f2fs_stop_gc_thread() called from
different f2fs shutdown paths:
[CPU0] [CPU1]
---------------------- -----------------------
f2fs_stop_gc_thread f2fs_stop_gc_thread
gc_th = sbi->gc_thread
gc_th = sbi->gc_thread
kfree(gc_th)
sbi->gc_thread = NULL
< gc_th != NULL >
kthread_stop(gc_th->f2fs_gc_task) //UAF
The commit c7f114d864ac ("f2fs: fix to avoid use-after-free in
f2fs_stop_gc_thread()") attempted to fix this issue by using a read
semaphore to prevent races between shutdown and remount threads, but
it fails to prevent all race conditions.
Fix it by converting to write lock of s_umount in f2fs_do_shutdown(). |
| In the Linux kernel, the following vulnerability has been resolved:
nfsd: release svc_expkey/svc_export with rcu_work
The last reference for `cache_head` can be reduced to zero in `c_show`
and `e_show`(using `rcu_read_lock` and `rcu_read_unlock`). Consequently,
`svc_export_put` and `expkey_put` will be invoked, leading to two
issues:
1. The `svc_export_put` will directly free ex_uuid. However,
`e_show`/`c_show` will access `ex_uuid` after `cache_put`, which can
trigger a use-after-free issue, shown below.
==================================================================
BUG: KASAN: slab-use-after-free in svc_export_show+0x362/0x430 [nfsd]
Read of size 1 at addr ff11000010fdc120 by task cat/870
CPU: 1 UID: 0 PID: 870 Comm: cat Not tainted 6.12.0-rc3+ #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
1.16.1-2.fc37 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x53/0x70
print_address_description.constprop.0+0x2c/0x3a0
print_report+0xb9/0x280
kasan_report+0xae/0xe0
svc_export_show+0x362/0x430 [nfsd]
c_show+0x161/0x390 [sunrpc]
seq_read_iter+0x589/0x770
seq_read+0x1e5/0x270
proc_reg_read+0xe1/0x140
vfs_read+0x125/0x530
ksys_read+0xc1/0x160
do_syscall_64+0x5f/0x170
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Allocated by task 830:
kasan_save_stack+0x20/0x40
kasan_save_track+0x14/0x30
__kasan_kmalloc+0x8f/0xa0
__kmalloc_node_track_caller_noprof+0x1bc/0x400
kmemdup_noprof+0x22/0x50
svc_export_parse+0x8a9/0xb80 [nfsd]
cache_do_downcall+0x71/0xa0 [sunrpc]
cache_write_procfs+0x8e/0xd0 [sunrpc]
proc_reg_write+0xe1/0x140
vfs_write+0x1a5/0x6d0
ksys_write+0xc1/0x160
do_syscall_64+0x5f/0x170
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Freed by task 868:
kasan_save_stack+0x20/0x40
kasan_save_track+0x14/0x30
kasan_save_free_info+0x3b/0x60
__kasan_slab_free+0x37/0x50
kfree+0xf3/0x3e0
svc_export_put+0x87/0xb0 [nfsd]
cache_purge+0x17f/0x1f0 [sunrpc]
nfsd_destroy_serv+0x226/0x2d0 [nfsd]
nfsd_svc+0x125/0x1e0 [nfsd]
write_threads+0x16a/0x2a0 [nfsd]
nfsctl_transaction_write+0x74/0xa0 [nfsd]
vfs_write+0x1a5/0x6d0
ksys_write+0xc1/0x160
do_syscall_64+0x5f/0x170
entry_SYSCALL_64_after_hwframe+0x76/0x7e
2. We cannot sleep while using `rcu_read_lock`/`rcu_read_unlock`.
However, `svc_export_put`/`expkey_put` will call path_put, which
subsequently triggers a sleeping operation due to the following
`dput`.
=============================
WARNING: suspicious RCU usage
5.10.0-dirty #141 Not tainted
-----------------------------
...
Call Trace:
dump_stack+0x9a/0xd0
___might_sleep+0x231/0x240
dput+0x39/0x600
path_put+0x1b/0x30
svc_export_put+0x17/0x80
e_show+0x1c9/0x200
seq_read_iter+0x63f/0x7c0
seq_read+0x226/0x2d0
vfs_read+0x113/0x2c0
ksys_read+0xc9/0x170
do_syscall_64+0x33/0x40
entry_SYSCALL_64_after_hwframe+0x67/0xd1
Fix these issues by using `rcu_work` to help release
`svc_expkey`/`svc_export`. This approach allows for an asynchronous
context to invoke `path_put` and also facilitates the freeing of
`uuid/exp/key` after an RCU grace period. |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix NULL ptr deref in crypto_aead_setkey()
Neither SMB3.0 or SMB3.02 supports encryption negotiate context, so
when SMB2_GLOBAL_CAP_ENCRYPTION flag is set in the negotiate response,
the client uses AES-128-CCM as the default cipher. See MS-SMB2
3.3.5.4.
Commit b0abcd65ec54 ("smb: client: fix UAF in async decryption") added
a @server->cipher_type check to conditionally call
smb3_crypto_aead_allocate(), but that check would always be false as
@server->cipher_type is unset for SMB3.02.
Fix the following KASAN splat by setting @server->cipher_type for
SMB3.02 as well.
mount.cifs //srv/share /mnt -o vers=3.02,seal,...
BUG: KASAN: null-ptr-deref in crypto_aead_setkey+0x2c/0x130
Read of size 8 at addr 0000000000000020 by task mount.cifs/1095
CPU: 1 UID: 0 PID: 1095 Comm: mount.cifs Not tainted 6.12.0 #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-3.fc41
04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x5d/0x80
? crypto_aead_setkey+0x2c/0x130
kasan_report+0xda/0x110
? crypto_aead_setkey+0x2c/0x130
crypto_aead_setkey+0x2c/0x130
crypt_message+0x258/0xec0 [cifs]
? __asan_memset+0x23/0x50
? __pfx_crypt_message+0x10/0x10 [cifs]
? mark_lock+0xb0/0x6a0
? hlock_class+0x32/0xb0
? mark_lock+0xb0/0x6a0
smb3_init_transform_rq+0x352/0x3f0 [cifs]
? lock_acquire.part.0+0xf4/0x2a0
smb_send_rqst+0x144/0x230 [cifs]
? __pfx_smb_send_rqst+0x10/0x10 [cifs]
? hlock_class+0x32/0xb0
? smb2_setup_request+0x225/0x3a0 [cifs]
? __pfx_cifs_compound_last_callback+0x10/0x10 [cifs]
compound_send_recv+0x59b/0x1140 [cifs]
? __pfx_compound_send_recv+0x10/0x10 [cifs]
? __create_object+0x5e/0x90
? hlock_class+0x32/0xb0
? do_raw_spin_unlock+0x9a/0xf0
cifs_send_recv+0x23/0x30 [cifs]
SMB2_tcon+0x3ec/0xb30 [cifs]
? __pfx_SMB2_tcon+0x10/0x10 [cifs]
? lock_acquire.part.0+0xf4/0x2a0
? __pfx_lock_release+0x10/0x10
? do_raw_spin_trylock+0xc6/0x120
? lock_acquire+0x3f/0x90
? _get_xid+0x16/0xd0 [cifs]
? __pfx_SMB2_tcon+0x10/0x10 [cifs]
? cifs_get_smb_ses+0xcdd/0x10a0 [cifs]
cifs_get_smb_ses+0xcdd/0x10a0 [cifs]
? __pfx_cifs_get_smb_ses+0x10/0x10 [cifs]
? cifs_get_tcp_session+0xaa0/0xca0 [cifs]
cifs_mount_get_session+0x8a/0x210 [cifs]
dfs_mount_share+0x1b0/0x11d0 [cifs]
? __pfx___lock_acquire+0x10/0x10
? __pfx_dfs_mount_share+0x10/0x10 [cifs]
? lock_acquire.part.0+0xf4/0x2a0
? find_held_lock+0x8a/0xa0
? hlock_class+0x32/0xb0
? lock_release+0x203/0x5d0
cifs_mount+0xb3/0x3d0 [cifs]
? do_raw_spin_trylock+0xc6/0x120
? __pfx_cifs_mount+0x10/0x10 [cifs]
? lock_acquire+0x3f/0x90
? find_nls+0x16/0xa0
? smb3_update_mnt_flags+0x372/0x3b0 [cifs]
cifs_smb3_do_mount+0x1e2/0xc80 [cifs]
? __pfx_vfs_parse_fs_string+0x10/0x10
? __pfx_cifs_smb3_do_mount+0x10/0x10 [cifs]
smb3_get_tree+0x1bf/0x330 [cifs]
vfs_get_tree+0x4a/0x160
path_mount+0x3c1/0xfb0
? kasan_quarantine_put+0xc7/0x1d0
? __pfx_path_mount+0x10/0x10
? kmem_cache_free+0x118/0x3e0
? user_path_at+0x74/0xa0
__x64_sys_mount+0x1a6/0x1e0
? __pfx___x64_sys_mount+0x10/0x10
? mark_held_locks+0x1a/0x90
do_syscall_64+0xbb/0x1d0
entry_SYSCALL_64_after_hwframe+0x77/0x7f |
| In the Linux kernel, the following vulnerability has been resolved:
Revert "block, bfq: merge bfq_release_process_ref() into bfq_put_cooperator()"
This reverts commit bc3b1e9e7c50e1de0f573eea3871db61dd4787de.
The bic is associated with sync_bfqq, and bfq_release_process_ref cannot
be put into bfq_put_cooperator.
kasan report:
[ 400.347277] ==================================================================
[ 400.347287] BUG: KASAN: slab-use-after-free in bic_set_bfqq+0x200/0x230
[ 400.347420] Read of size 8 at addr ffff88881cab7d60 by task dockerd/5800
[ 400.347430]
[ 400.347436] CPU: 24 UID: 0 PID: 5800 Comm: dockerd Kdump: loaded Tainted: G E 6.12.0 #32
[ 400.347450] Tainted: [E]=UNSIGNED_MODULE
[ 400.347454] Hardware name: VMware, Inc. VMware20,1/440BX Desktop Reference Platform, BIOS VMW201.00V.20192059.B64.2207280713 07/28/2022
[ 400.347460] Call Trace:
[ 400.347464] <TASK>
[ 400.347468] dump_stack_lvl+0x5d/0x80
[ 400.347490] print_report+0x174/0x505
[ 400.347521] kasan_report+0xe0/0x160
[ 400.347541] bic_set_bfqq+0x200/0x230
[ 400.347549] bfq_bic_update_cgroup+0x419/0x740
[ 400.347560] bfq_bio_merge+0x133/0x320
[ 400.347584] blk_mq_submit_bio+0x1761/0x1e20
[ 400.347625] __submit_bio+0x28b/0x7b0
[ 400.347664] submit_bio_noacct_nocheck+0x6b2/0xd30
[ 400.347690] iomap_readahead+0x50c/0x680
[ 400.347731] read_pages+0x17f/0x9c0
[ 400.347785] page_cache_ra_unbounded+0x366/0x4a0
[ 400.347795] filemap_fault+0x83d/0x2340
[ 400.347819] __xfs_filemap_fault+0x11a/0x7d0 [xfs]
[ 400.349256] __do_fault+0xf1/0x610
[ 400.349270] do_fault+0x977/0x11a0
[ 400.349281] __handle_mm_fault+0x5d1/0x850
[ 400.349314] handle_mm_fault+0x1f8/0x560
[ 400.349324] do_user_addr_fault+0x324/0x970
[ 400.349337] exc_page_fault+0x76/0xf0
[ 400.349350] asm_exc_page_fault+0x26/0x30
[ 400.349360] RIP: 0033:0x55a480d77375
[ 400.349384] Code: cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc 49 3b 66 10 0f 86 ae 02 00 00 55 48 89 e5 48 83 ec 58 48 8b 10 <83> 7a 10 00 0f 84 27 02 00 00 44 0f b6 42 28 44 0f b6 4a 29 41 80
[ 400.349392] RSP: 002b:00007f18c37fd8b8 EFLAGS: 00010216
[ 400.349401] RAX: 00007f18c37fd9d0 RBX: 0000000000000000 RCX: 0000000000000000
[ 400.349407] RDX: 000055a484407d38 RSI: 000000c000e8b0c0 RDI: 0000000000000000
[ 400.349412] RBP: 00007f18c37fd910 R08: 000055a484017f60 R09: 000055a484066f80
[ 400.349417] R10: 0000000000194000 R11: 0000000000000005 R12: 0000000000000008
[ 400.349422] R13: 0000000000000000 R14: 000000c000476a80 R15: 0000000000000000
[ 400.349430] </TASK>
[ 400.349452]
[ 400.349454] Allocated by task 5800:
[ 400.349459] kasan_save_stack+0x30/0x50
[ 400.349469] kasan_save_track+0x14/0x30
[ 400.349475] __kasan_slab_alloc+0x89/0x90
[ 400.349482] kmem_cache_alloc_node_noprof+0xdc/0x2a0
[ 400.349492] bfq_get_queue+0x1ef/0x1100
[ 400.349502] __bfq_get_bfqq_handle_split+0x11a/0x510
[ 400.349511] bfq_insert_requests+0xf55/0x9030
[ 400.349519] blk_mq_flush_plug_list+0x446/0x14c0
[ 400.349527] __blk_flush_plug+0x27c/0x4e0
[ 400.349534] blk_finish_plug+0x52/0xa0
[ 400.349540] _xfs_buf_ioapply+0x739/0xc30 [xfs]
[ 400.350246] __xfs_buf_submit+0x1b2/0x640 [xfs]
[ 400.350967] xfs_buf_read_map+0x306/0xa20 [xfs]
[ 400.351672] xfs_trans_read_buf_map+0x285/0x7d0 [xfs]
[ 400.352386] xfs_imap_to_bp+0x107/0x270 [xfs]
[ 400.353077] xfs_iget+0x70d/0x1eb0 [xfs]
[ 400.353786] xfs_lookup+0x2ca/0x3a0 [xfs]
[ 400.354506] xfs_vn_lookup+0x14e/0x1a0 [xfs]
[ 400.355197] __lookup_slow+0x19c/0x340
[ 400.355204] lookup_one_unlocked+0xfc/0x120
[ 400.355211] ovl_lookup_single+0x1b3/0xcf0 [overlay]
[ 400.355255] ovl_lookup_layer+0x316/0x490 [overlay]
[ 400.355295] ovl_lookup+0x844/0x1fd0 [overlay]
[ 400.355351] lookup_one_qstr_excl+0xef/0x150
[ 400.355357] do_unlinkat+0x22a/0x620
[ 400.355366] __x64_sys_unlinkat+0x109/0x1e0
[ 400.355375] do_syscall_64+0x82/0x160
[ 400.355384] entry_SYSCALL_64_after_hwframe+0x76/0x7
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
sunrpc: fix one UAF issue caused by sunrpc kernel tcp socket
BUG: KASAN: slab-use-after-free in tcp_write_timer_handler+0x156/0x3e0
Read of size 1 at addr ffff888111f322cd by task swapper/0/0
CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Not tainted 6.12.0-rc4-dirty #7
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1
Call Trace:
<IRQ>
dump_stack_lvl+0x68/0xa0
print_address_description.constprop.0+0x2c/0x3d0
print_report+0xb4/0x270
kasan_report+0xbd/0xf0
tcp_write_timer_handler+0x156/0x3e0
tcp_write_timer+0x66/0x170
call_timer_fn+0xfb/0x1d0
__run_timers+0x3f8/0x480
run_timer_softirq+0x9b/0x100
handle_softirqs+0x153/0x390
__irq_exit_rcu+0x103/0x120
irq_exit_rcu+0xe/0x20
sysvec_apic_timer_interrupt+0x76/0x90
</IRQ>
<TASK>
asm_sysvec_apic_timer_interrupt+0x1a/0x20
RIP: 0010:default_idle+0xf/0x20
Code: 4c 01 c7 4c 29 c2 e9 72 ff ff ff 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 f3 0f 1e fa 66 90 0f 00 2d 33 f8 25 00 fb f4 <fa> c3 cc cc cc
cc 66 66 2e 0f 1f 84 00 00 00 00 00 90 90 90 90 90
RSP: 0018:ffffffffa2007e28 EFLAGS: 00000242
RAX: 00000000000f3b31 RBX: 1ffffffff4400fc7 RCX: ffffffffa09c3196
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffffffff9f00590f
RBP: 0000000000000000 R08: 0000000000000001 R09: ffffed102360835d
R10: ffff88811b041aeb R11: 0000000000000001 R12: 0000000000000000
R13: ffffffffa202d7c0 R14: 0000000000000000 R15: 00000000000147d0
default_idle_call+0x6b/0xa0
cpuidle_idle_call+0x1af/0x1f0
do_idle+0xbc/0x130
cpu_startup_entry+0x33/0x40
rest_init+0x11f/0x210
start_kernel+0x39a/0x420
x86_64_start_reservations+0x18/0x30
x86_64_start_kernel+0x97/0xa0
common_startup_64+0x13e/0x141
</TASK>
Allocated by task 595:
kasan_save_stack+0x24/0x50
kasan_save_track+0x14/0x30
__kasan_slab_alloc+0x87/0x90
kmem_cache_alloc_noprof+0x12b/0x3f0
copy_net_ns+0x94/0x380
create_new_namespaces+0x24c/0x500
unshare_nsproxy_namespaces+0x75/0xf0
ksys_unshare+0x24e/0x4f0
__x64_sys_unshare+0x1f/0x30
do_syscall_64+0x70/0x180
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Freed by task 100:
kasan_save_stack+0x24/0x50
kasan_save_track+0x14/0x30
kasan_save_free_info+0x3b/0x60
__kasan_slab_free+0x54/0x70
kmem_cache_free+0x156/0x5d0
cleanup_net+0x5d3/0x670
process_one_work+0x776/0xa90
worker_thread+0x2e2/0x560
kthread+0x1a8/0x1f0
ret_from_fork+0x34/0x60
ret_from_fork_asm+0x1a/0x30
Reproduction script:
mkdir -p /mnt/nfsshare
mkdir -p /mnt/nfs/netns_1
mkfs.ext4 /dev/sdb
mount /dev/sdb /mnt/nfsshare
systemctl restart nfs-server
chmod 777 /mnt/nfsshare
exportfs -i -o rw,no_root_squash *:/mnt/nfsshare
ip netns add netns_1
ip link add name veth_1_peer type veth peer veth_1
ifconfig veth_1_peer 11.11.0.254 up
ip link set veth_1 netns netns_1
ip netns exec netns_1 ifconfig veth_1 11.11.0.1
ip netns exec netns_1 /root/iptables -A OUTPUT -d 11.11.0.254 -p tcp \
--tcp-flags FIN FIN -j DROP
(note: In my environment, a DESTROY_CLIENTID operation is always sent
immediately, breaking the nfs tcp connection.)
ip netns exec netns_1 timeout -s 9 300 mount -t nfs -o proto=tcp,vers=4.1 \
11.11.0.254:/mnt/nfsshare /mnt/nfs/netns_1
ip netns del netns_1
The reason here is that the tcp socket in netns_1 (nfs side) has been
shutdown and closed (done in xs_destroy), but the FIN message (with ack)
is discarded, and the nfsd side keeps sending retransmission messages.
As a result, when the tcp sock in netns_1 processes the received message,
it sends the message (FIN message) in the sending queue, and the tcp timer
is re-established. When the network namespace is deleted, the net structure
accessed by tcp's timer handler function causes problems.
To fix this problem, let's hold netns refcnt for the tcp kernel socket as
done in other modules. This is an ugly hack which can easily be backported
to earlier kernels. A proper fix which cleans up the interfaces will
follow, but may not be so easy to backport. |
| In the Linux kernel, the following vulnerability has been resolved:
fsnotify: Fix ordering of iput() and watched_objects decrement
Ensure the superblock is kept alive until we're done with iput().
Holding a reference to an inode is not allowed unless we ensure the
superblock stays alive, which fsnotify does by keeping the
watched_objects count elevated, so iput() must happen before the
watched_objects decrement.
This can lead to a UAF of something like sb->s_fs_info in tmpfs, but the
UAF is hard to hit because race orderings that oops are more likely, thanks
to the CHECK_DATA_CORRUPTION() block in generic_shutdown_super().
Also, ensure that fsnotify_put_sb_watched_objects() doesn't call
fsnotify_sb_watched_objects() on a superblock that may have already been
freed, which would cause a UAF read of sb->s_fsnotify_info. |
| In the Linux kernel, the following vulnerability has been resolved:
sctp: fix possible UAF in sctp_v6_available()
A lockdep report [1] with CONFIG_PROVE_RCU_LIST=y hints
that sctp_v6_available() is calling dev_get_by_index_rcu()
and ipv6_chk_addr() without holding rcu.
[1]
=============================
WARNING: suspicious RCU usage
6.12.0-rc5-virtme #1216 Tainted: G W
-----------------------------
net/core/dev.c:876 RCU-list traversed in non-reader section!!
other info that might help us debug this:
rcu_scheduler_active = 2, debug_locks = 1
1 lock held by sctp_hello/31495:
#0: ffff9f1ebbdb7418 (sk_lock-AF_INET6){+.+.}-{0:0}, at: sctp_bind (./arch/x86/include/asm/jump_label.h:27 net/sctp/socket.c:315) sctp
stack backtrace:
CPU: 7 UID: 0 PID: 31495 Comm: sctp_hello Tainted: G W 6.12.0-rc5-virtme #1216
Tainted: [W]=WARN
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl (lib/dump_stack.c:123)
lockdep_rcu_suspicious (kernel/locking/lockdep.c:6822)
dev_get_by_index_rcu (net/core/dev.c:876 (discriminator 7))
sctp_v6_available (net/sctp/ipv6.c:701) sctp
sctp_do_bind (net/sctp/socket.c:400 (discriminator 1)) sctp
sctp_bind (net/sctp/socket.c:320) sctp
inet6_bind_sk (net/ipv6/af_inet6.c:465)
? security_socket_bind (security/security.c:4581 (discriminator 1))
__sys_bind (net/socket.c:1848 net/socket.c:1869)
? do_user_addr_fault (./include/linux/rcupdate.h:347 ./include/linux/rcupdate.h:880 ./include/linux/mm.h:729 arch/x86/mm/fault.c:1340)
? do_user_addr_fault (./arch/x86/include/asm/preempt.h:84 (discriminator 13) ./include/linux/rcupdate.h:98 (discriminator 13) ./include/linux/rcupdate.h:882 (discriminator 13) ./include/linux/mm.h:729 (discriminator 13) arch/x86/mm/fault.c:1340 (discriminator 13))
__x64_sys_bind (net/socket.c:1877 (discriminator 1) net/socket.c:1875 (discriminator 1) net/socket.c:1875 (discriminator 1))
do_syscall_64 (arch/x86/entry/common.c:52 (discriminator 1) arch/x86/entry/common.c:83 (discriminator 1))
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130)
RIP: 0033:0x7f59b934a1e7
Code: 44 00 00 48 8b 15 39 8c 0c 00 f7 d8 64 89 02 b8 ff ff ff ff eb bd 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 00 b8 31 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 09 8c 0c 00 f7 d8 64 89 01 48
All code
========
0: 44 00 00 add %r8b,(%rax)
3: 48 8b 15 39 8c 0c 00 mov 0xc8c39(%rip),%rdx # 0xc8c43
a: f7 d8 neg %eax
c: 64 89 02 mov %eax,%fs:(%rdx)
f: b8 ff ff ff ff mov $0xffffffff,%eax
14: eb bd jmp 0xffffffffffffffd3
16: 66 2e 0f 1f 84 00 00 cs nopw 0x0(%rax,%rax,1)
1d: 00 00 00
20: 0f 1f 00 nopl (%rax)
23: b8 31 00 00 00 mov $0x31,%eax
28: 0f 05 syscall
2a:* 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax <-- trapping instruction
30: 73 01 jae 0x33
32: c3 ret
33: 48 8b 0d 09 8c 0c 00 mov 0xc8c09(%rip),%rcx # 0xc8c43
3a: f7 d8 neg %eax
3c: 64 89 01 mov %eax,%fs:(%rcx)
3f: 48 rex.W
Code starting with the faulting instruction
===========================================
0: 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax
6: 73 01 jae 0x9
8: c3 ret
9: 48 8b 0d 09 8c 0c 00 mov 0xc8c09(%rip),%rcx # 0xc8c19
10: f7 d8 neg %eax
12: 64 89 01 mov %eax,%fs:(%rcx)
15: 48 rex.W
RSP: 002b:00007ffe2d0ad398 EFLAGS: 00000202 ORIG_RAX: 0000000000000031
RAX: ffffffffffffffda RBX: 00007ffe2d0ad3d0 RCX: 00007f59b934a1e7
RDX: 000000000000001c RSI: 00007ffe2d0ad3d0 RDI: 0000000000000005
RBP: 0000000000000005 R08: 1999999999999999 R09: 0000000000000000
R10: 00007f59b9253298 R11: 000000000000
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: Fix use-after-free of network namespace.
Recently, we got a customer report that CIFS triggers oops while
reconnecting to a server. [0]
The workload runs on Kubernetes, and some pods mount CIFS servers
in non-root network namespaces. The problem rarely happened, but
it was always while the pod was dying.
The root cause is wrong reference counting for network namespace.
CIFS uses kernel sockets, which do not hold refcnt of the netns that
the socket belongs to. That means CIFS must ensure the socket is
always freed before its netns; otherwise, use-after-free happens.
The repro steps are roughly:
1. mount CIFS in a non-root netns
2. drop packets from the netns
3. destroy the netns
4. unmount CIFS
We can reproduce the issue quickly with the script [1] below and see
the splat [2] if CONFIG_NET_NS_REFCNT_TRACKER is enabled.
When the socket is TCP, it is hard to guarantee the netns lifetime
without holding refcnt due to async timers.
Let's hold netns refcnt for each socket as done for SMC in commit
9744d2bf1976 ("smc: Fix use-after-free in tcp_write_timer_handler().").
Note that we need to move put_net() from cifs_put_tcp_session() to
clean_demultiplex_info(); otherwise, __sock_create() still could touch a
freed netns while cifsd tries to reconnect from cifs_demultiplex_thread().
Also, maybe_get_net() cannot be put just before __sock_create() because
the code is not under RCU and there is a small chance that the same
address happened to be reallocated to another netns.
[0]:
CIFS: VFS: \\XXXXXXXXXXX has not responded in 15 seconds. Reconnecting...
CIFS: Serverclose failed 4 times, giving up
Unable to handle kernel paging request at virtual address 14de99e461f84a07
Mem abort info:
ESR = 0x0000000096000004
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x04: level 0 translation fault
Data abort info:
ISV = 0, ISS = 0x00000004
CM = 0, WnR = 0
[14de99e461f84a07] address between user and kernel address ranges
Internal error: Oops: 0000000096000004 [#1] SMP
Modules linked in: cls_bpf sch_ingress nls_utf8 cifs cifs_arc4 cifs_md4 dns_resolver tcp_diag inet_diag veth xt_state xt_connmark nf_conntrack_netlink xt_nat xt_statistic xt_MASQUERADE xt_mark xt_addrtype ipt_REJECT nf_reject_ipv4 nft_chain_nat nf_nat xt_conntrack nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 xt_comment nft_compat nf_tables nfnetlink overlay nls_ascii nls_cp437 sunrpc vfat fat aes_ce_blk aes_ce_cipher ghash_ce sm4_ce_cipher sm4 sm3_ce sm3 sha3_ce sha512_ce sha512_arm64 sha1_ce ena button sch_fq_codel loop fuse configfs dmi_sysfs sha2_ce sha256_arm64 dm_mirror dm_region_hash dm_log dm_mod dax efivarfs
CPU: 5 PID: 2690970 Comm: cifsd Not tainted 6.1.103-109.184.amzn2023.aarch64 #1
Hardware name: Amazon EC2 r7g.4xlarge/, BIOS 1.0 11/1/2018
pstate: 00400005 (nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : fib_rules_lookup+0x44/0x238
lr : __fib_lookup+0x64/0xbc
sp : ffff8000265db790
x29: ffff8000265db790 x28: 0000000000000000 x27: 000000000000bd01
x26: 0000000000000000 x25: ffff000b4baf8000 x24: ffff00047b5e4580
x23: ffff8000265db7e0 x22: 0000000000000000 x21: ffff00047b5e4500
x20: ffff0010e3f694f8 x19: 14de99e461f849f7 x18: 0000000000000000
x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000
x14: 0000000000000000 x13: 0000000000000000 x12: 3f92800abd010002
x11: 0000000000000001 x10: ffff0010e3f69420 x9 : ffff800008a6f294
x8 : 0000000000000000 x7 : 0000000000000006 x6 : 0000000000000000
x5 : 0000000000000001 x4 : ffff001924354280 x3 : ffff8000265db7e0
x2 : 0000000000000000 x1 : ffff0010e3f694f8 x0 : ffff00047b5e4500
Call trace:
fib_rules_lookup+0x44/0x238
__fib_lookup+0x64/0xbc
ip_route_output_key_hash_rcu+0x2c4/0x398
ip_route_output_key_hash+0x60/0x8c
tcp_v4_connect+0x290/0x488
__inet_stream_connect+0x108/0x3d0
inet_stream_connect+0x50/0x78
kernel_connect+0x6c/0xac
generic_ip_conne
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: arm_scmi: Fix slab-use-after-free in scmi_bus_notifier()
The scmi_dev->name is released prematurely in __scmi_device_destroy(),
which causes slab-use-after-free when accessing scmi_dev->name in
scmi_bus_notifier(). So move the release of scmi_dev->name to
scmi_device_release() to avoid slab-use-after-free.
| BUG: KASAN: slab-use-after-free in strncmp+0xe4/0xec
| Read of size 1 at addr ffffff80a482bcc0 by task swapper/0/1
|
| CPU: 1 PID: 1 Comm: swapper/0 Not tainted 6.6.38-debug #1
| Hardware name: Qualcomm Technologies, Inc. SA8775P Ride (DT)
| Call trace:
| dump_backtrace+0x94/0x114
| show_stack+0x18/0x24
| dump_stack_lvl+0x48/0x60
| print_report+0xf4/0x5b0
| kasan_report+0xa4/0xec
| __asan_report_load1_noabort+0x20/0x2c
| strncmp+0xe4/0xec
| scmi_bus_notifier+0x5c/0x54c
| notifier_call_chain+0xb4/0x31c
| blocking_notifier_call_chain+0x68/0x9c
| bus_notify+0x54/0x78
| device_del+0x1bc/0x840
| device_unregister+0x20/0xb4
| __scmi_device_destroy+0xac/0x280
| scmi_device_destroy+0x94/0xd0
| scmi_chan_setup+0x524/0x750
| scmi_probe+0x7fc/0x1508
| platform_probe+0xc4/0x19c
| really_probe+0x32c/0x99c
| __driver_probe_device+0x15c/0x3c4
| driver_probe_device+0x5c/0x170
| __driver_attach+0x1c8/0x440
| bus_for_each_dev+0xf4/0x178
| driver_attach+0x3c/0x58
| bus_add_driver+0x234/0x4d4
| driver_register+0xf4/0x3c0
| __platform_driver_register+0x60/0x88
| scmi_driver_init+0xb0/0x104
| do_one_initcall+0xb4/0x664
| kernel_init_freeable+0x3c8/0x894
| kernel_init+0x24/0x1e8
| ret_from_fork+0x10/0x20
|
| Allocated by task 1:
| kasan_save_stack+0x2c/0x54
| kasan_set_track+0x2c/0x40
| kasan_save_alloc_info+0x24/0x34
| __kasan_kmalloc+0xa0/0xb8
| __kmalloc_node_track_caller+0x6c/0x104
| kstrdup+0x48/0x84
| kstrdup_const+0x34/0x40
| __scmi_device_create.part.0+0x8c/0x408
| scmi_device_create+0x104/0x370
| scmi_chan_setup+0x2a0/0x750
| scmi_probe+0x7fc/0x1508
| platform_probe+0xc4/0x19c
| really_probe+0x32c/0x99c
| __driver_probe_device+0x15c/0x3c4
| driver_probe_device+0x5c/0x170
| __driver_attach+0x1c8/0x440
| bus_for_each_dev+0xf4/0x178
| driver_attach+0x3c/0x58
| bus_add_driver+0x234/0x4d4
| driver_register+0xf4/0x3c0
| __platform_driver_register+0x60/0x88
| scmi_driver_init+0xb0/0x104
| do_one_initcall+0xb4/0x664
| kernel_init_freeable+0x3c8/0x894
| kernel_init+0x24/0x1e8
| ret_from_fork+0x10/0x20
|
| Freed by task 1:
| kasan_save_stack+0x2c/0x54
| kasan_set_track+0x2c/0x40
| kasan_save_free_info+0x38/0x5c
| __kasan_slab_free+0xe8/0x164
| __kmem_cache_free+0x11c/0x230
| kfree+0x70/0x130
| kfree_const+0x20/0x40
| __scmi_device_destroy+0x70/0x280
| scmi_device_destroy+0x94/0xd0
| scmi_chan_setup+0x524/0x750
| scmi_probe+0x7fc/0x1508
| platform_probe+0xc4/0x19c
| really_probe+0x32c/0x99c
| __driver_probe_device+0x15c/0x3c4
| driver_probe_device+0x5c/0x170
| __driver_attach+0x1c8/0x440
| bus_for_each_dev+0xf4/0x178
| driver_attach+0x3c/0x58
| bus_add_driver+0x234/0x4d4
| driver_register+0xf4/0x3c0
| __platform_driver_register+0x60/0x88
| scmi_driver_init+0xb0/0x104
| do_one_initcall+0xb4/0x664
| kernel_init_freeable+0x3c8/0x894
| kernel_init+0x24/0x1e8
| ret_from_fork+0x10/0x20 |
| In the Linux kernel, the following vulnerability has been resolved:
cxl/port: Fix use-after-free, permit out-of-order decoder shutdown
In support of investigating an initialization failure report [1],
cxl_test was updated to register mock memory-devices after the mock
root-port/bus device had been registered. That led to cxl_test crashing
with a use-after-free bug with the following signature:
cxl_port_attach_region: cxl region3: cxl_host_bridge.0:port3 decoder3.0 add: mem0:decoder7.0 @ 0 next: cxl_switch_uport.0 nr_eps: 1 nr_targets: 1
cxl_port_attach_region: cxl region3: cxl_host_bridge.0:port3 decoder3.0 add: mem4:decoder14.0 @ 1 next: cxl_switch_uport.0 nr_eps: 2 nr_targets: 1
cxl_port_setup_targets: cxl region3: cxl_switch_uport.0:port6 target[0] = cxl_switch_dport.0 for mem0:decoder7.0 @ 0
1) cxl_port_setup_targets: cxl region3: cxl_switch_uport.0:port6 target[1] = cxl_switch_dport.4 for mem4:decoder14.0 @ 1
[..]
cxld_unregister: cxl decoder14.0:
cxl_region_decode_reset: cxl_region region3:
mock_decoder_reset: cxl_port port3: decoder3.0 reset
2) mock_decoder_reset: cxl_port port3: decoder3.0: out of order reset, expected decoder3.1
cxl_endpoint_decoder_release: cxl decoder14.0:
[..]
cxld_unregister: cxl decoder7.0:
3) cxl_region_decode_reset: cxl_region region3:
Oops: general protection fault, probably for non-canonical address 0x6b6b6b6b6b6b6bc3: 0000 [#1] PREEMPT SMP PTI
[..]
RIP: 0010:to_cxl_port+0x8/0x60 [cxl_core]
[..]
Call Trace:
<TASK>
cxl_region_decode_reset+0x69/0x190 [cxl_core]
cxl_region_detach+0xe8/0x210 [cxl_core]
cxl_decoder_kill_region+0x27/0x40 [cxl_core]
cxld_unregister+0x5d/0x60 [cxl_core]
At 1) a region has been established with 2 endpoint decoders (7.0 and
14.0). Those endpoints share a common switch-decoder in the topology
(3.0). At teardown, 2), decoder14.0 is the first to be removed and hits
the "out of order reset case" in the switch decoder. The effect though
is that region3 cleanup is aborted leaving it in-tact and
referencing decoder14.0. At 3) the second attempt to teardown region3
trips over the stale decoder14.0 object which has long since been
deleted.
The fix here is to recognize that the CXL specification places no
mandate on in-order shutdown of switch-decoders, the driver enforces
in-order allocation, and hardware enforces in-order commit. So, rather
than fail and leave objects dangling, always remove them.
In support of making cxl_region_decode_reset() always succeed,
cxl_region_invalidate_memregion() failures are turned into warnings.
Crashing the kernel is ok there since system integrity is at risk if
caches cannot be managed around physical address mutation events like
CXL region destruction.
A new device_for_each_child_reverse_from() is added to cleanup
port->commit_end after all dependent decoders have been disabled. In
other words if decoders are allocated 0->1->2 and disabled 1->2->0 then
port->commit_end only decrements from 2 after 2 has been disabled, and
it decrements all the way to zero since 1 was disabled previously. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix use-after-free of block device file in __btrfs_free_extra_devids()
Mounting btrfs from two images (which have the same one fsid and two
different dev_uuids) in certain executing order may trigger an UAF for
variable 'device->bdev_file' in __btrfs_free_extra_devids(). And
following are the details:
1. Attach image_1 to loop0, attach image_2 to loop1, and scan btrfs
devices by ioctl(BTRFS_IOC_SCAN_DEV):
/ btrfs_device_1 → loop0
fs_device
\ btrfs_device_2 → loop1
2. mount /dev/loop0 /mnt
btrfs_open_devices
btrfs_device_1->bdev_file = btrfs_get_bdev_and_sb(loop0)
btrfs_device_2->bdev_file = btrfs_get_bdev_and_sb(loop1)
btrfs_fill_super
open_ctree
fail: btrfs_close_devices // -ENOMEM
btrfs_close_bdev(btrfs_device_1)
fput(btrfs_device_1->bdev_file)
// btrfs_device_1->bdev_file is freed
btrfs_close_bdev(btrfs_device_2)
fput(btrfs_device_2->bdev_file)
3. mount /dev/loop1 /mnt
btrfs_open_devices
btrfs_get_bdev_and_sb(&bdev_file)
// EIO, btrfs_device_1->bdev_file is not assigned,
// which points to a freed memory area
btrfs_device_2->bdev_file = btrfs_get_bdev_and_sb(loop1)
btrfs_fill_super
open_ctree
btrfs_free_extra_devids
if (btrfs_device_1->bdev_file)
fput(btrfs_device_1->bdev_file) // UAF !
Fix it by setting 'device->bdev_file' as 'NULL' after closing the
btrfs_device in btrfs_close_one_device(). |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: arm_scmi: Fix the double free in scmi_debugfs_common_setup()
Clang static checker(scan-build) throws below warning:
| drivers/firmware/arm_scmi/driver.c:line 2915, column 2
| Attempt to free released memory.
When devm_add_action_or_reset() fails, scmi_debugfs_common_cleanup()
will run twice which causes double free of 'dbg->name'.
Remove the redundant scmi_debugfs_common_cleanup() to fix this problem. |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix possible double free in smb2_set_ea()
Clang static checker(scan-build) warning:
fs/smb/client/smb2ops.c:1304:2: Attempt to free released memory.
1304 | kfree(ea);
| ^~~~~~~~~
There is a double free in such case:
'ea is initialized to NULL' -> 'first successful memory allocation for
ea' -> 'something failed, goto sea_exit' -> 'first memory release for ea'
-> 'goto replay_again' -> 'second goto sea_exit before allocate memory
for ea' -> 'second memory release for ea resulted in double free'.
Re-initialie 'ea' to NULL near to the replay_again label, it can fix this
double free problem. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe: Don't free job in TDR
Freeing job in TDR is not safe as TDR can pass the run_job thread
resulting in UAF. It is only safe for free job to naturally be called by
the scheduler. Rather free job in TDR, add to pending list.
(cherry picked from commit ea2f6a77d0c40d97f4a4dc93fee4afe15d94926d) |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: bpf: must hold reference on net namespace
BUG: KASAN: slab-use-after-free in __nf_unregister_net_hook+0x640/0x6b0
Read of size 8 at addr ffff8880106fe400 by task repro/72=
bpf_nf_link_release+0xda/0x1e0
bpf_link_free+0x139/0x2d0
bpf_link_release+0x68/0x80
__fput+0x414/0xb60
Eric says:
It seems that bpf was able to defer the __nf_unregister_net_hook()
after exit()/close() time.
Perhaps a netns reference is missing, because the netns has been
dismantled/freed already.
bpf_nf_link_attach() does :
link->net = net;
But I do not see a reference being taken on net.
Add such a reference and release it after hook unreg.
Note that I was unable to get syzbot reproducer to work, so I
do not know if this resolves this splat. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: arm64: Unregister redistributor for failed vCPU creation
Alex reports that syzkaller has managed to trigger a use-after-free when
tearing down a VM:
BUG: KASAN: slab-use-after-free in kvm_put_kvm+0x300/0xe68 virt/kvm/kvm_main.c:5769
Read of size 8 at addr ffffff801c6890d0 by task syz.3.2219/10758
CPU: 3 UID: 0 PID: 10758 Comm: syz.3.2219 Not tainted 6.11.0-rc6-dirty #64
Hardware name: linux,dummy-virt (DT)
Call trace:
dump_backtrace+0x17c/0x1a8 arch/arm64/kernel/stacktrace.c:317
show_stack+0x2c/0x3c arch/arm64/kernel/stacktrace.c:324
__dump_stack lib/dump_stack.c:93 [inline]
dump_stack_lvl+0x94/0xc0 lib/dump_stack.c:119
print_report+0x144/0x7a4 mm/kasan/report.c:377
kasan_report+0xcc/0x128 mm/kasan/report.c:601
__asan_report_load8_noabort+0x20/0x2c mm/kasan/report_generic.c:381
kvm_put_kvm+0x300/0xe68 virt/kvm/kvm_main.c:5769
kvm_vm_release+0x4c/0x60 virt/kvm/kvm_main.c:1409
__fput+0x198/0x71c fs/file_table.c:422
____fput+0x20/0x30 fs/file_table.c:450
task_work_run+0x1cc/0x23c kernel/task_work.c:228
do_notify_resume+0x144/0x1a0 include/linux/resume_user_mode.h:50
el0_svc+0x64/0x68 arch/arm64/kernel/entry-common.c:169
el0t_64_sync_handler+0x90/0xfc arch/arm64/kernel/entry-common.c:730
el0t_64_sync+0x190/0x194 arch/arm64/kernel/entry.S:598
Upon closer inspection, it appears that we do not properly tear down the
MMIO registration for a vCPU that fails creation late in the game, e.g.
a vCPU w/ the same ID already exists in the VM.
It is important to consider the context of commit that introduced this bug
by moving the unregistration out of __kvm_vgic_vcpu_destroy(). That
change correctly sought to avoid an srcu v. config_lock inversion by
breaking up the vCPU teardown into two parts, one guarded by the
config_lock.
Fix the use-after-free while avoiding lock inversion by adding a
special-cased unregistration to __kvm_vgic_vcpu_destroy(). This is safe
because failed vCPUs are torn down outside of the config_lock. |