| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe/tracing: Fix a potential TP_printk UAF
The commit
afd2627f727b ("tracing: Check "%s" dereference via the field and not the TP_printk format")
exposes potential UAFs in the xe_bo_move trace event.
Fix those by avoiding dereferencing the
xe_mem_type_to_name[] array at TP_printk time.
Since some code refactoring has taken place, explicit backporting may
be needed for kernels older than 6.10. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: iaa - Fix potential use after free bug
The free_device_compression_mode(iaa_device, device_mode) function frees
"device_mode" but it iss passed to iaa_compression_modes[i]->free() a few
lines later resulting in a use after free.
The good news is that, so far as I can tell, nothing implements the
->free() function and the use after free happens in dead code. But, with
this fix, when something does implement it, we'll be ready. :) |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to avoid use-after-free in f2fs_stop_gc_thread()
syzbot reports a f2fs bug as below:
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:114
print_report+0xe8/0x550 mm/kasan/report.c:491
kasan_report+0x143/0x180 mm/kasan/report.c:601
kasan_check_range+0x282/0x290 mm/kasan/generic.c:189
instrument_atomic_read_write include/linux/instrumented.h:96 [inline]
atomic_fetch_add_relaxed include/linux/atomic/atomic-instrumented.h:252 [inline]
__refcount_add include/linux/refcount.h:184 [inline]
__refcount_inc include/linux/refcount.h:241 [inline]
refcount_inc include/linux/refcount.h:258 [inline]
get_task_struct include/linux/sched/task.h:118 [inline]
kthread_stop+0xca/0x630 kernel/kthread.c:704
f2fs_stop_gc_thread+0x65/0xb0 fs/f2fs/gc.c:210
f2fs_do_shutdown+0x192/0x540 fs/f2fs/file.c:2283
f2fs_ioc_shutdown fs/f2fs/file.c:2325 [inline]
__f2fs_ioctl+0x443a/0xbe60 fs/f2fs/file.c:4325
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:907 [inline]
__se_sys_ioctl+0xfc/0x170 fs/ioctl.c:893
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
The root cause is below race condition, it may cause use-after-free
issue in sbi->gc_th pointer.
- remount
- f2fs_remount
- f2fs_stop_gc_thread
- kfree(gc_th)
- f2fs_ioc_shutdown
- f2fs_do_shutdown
- f2fs_stop_gc_thread
- kthread_stop(gc_th->f2fs_gc_task)
: sbi->gc_thread = NULL;
We will call f2fs_do_shutdown() in two paths:
- for f2fs_ioc_shutdown() path, we should grab sb->s_umount semaphore
for fixing.
- for f2fs_shutdown() path, it's safe since caller has already grabbed
sb->s_umount semaphore. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/hugetlb.c: fix UAF of vma in hugetlb fault pathway
Syzbot reports a UAF in hugetlb_fault(). This happens because
vmf_anon_prepare() could drop the per-VMA lock and allow the current VMA
to be freed before hugetlb_vma_unlock_read() is called.
We can fix this by using a modified version of vmf_anon_prepare() that
doesn't release the VMA lock on failure, and then release it ourselves
after hugetlb_vma_unlock_read(). |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix use-after-free in bpf_uprobe_multi_link_attach()
If bpf_link_prime() fails, bpf_uprobe_multi_link_attach() goes to the
error_free label and frees the array of bpf_uprobe's without calling
bpf_uprobe_unregister().
This leaks bpf_uprobe->uprobe and worse, this frees bpf_uprobe->consumer
without removing it from the uprobe->consumers list. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe/client: add missing bo locking in show_meminfo()
bo_meminfo() wants to inspect bo state like tt and the ttm resource,
however this state can change at any point leading to stuff like NPD and
UAF, if the bo lock is not held. Grab the bo lock when calling
bo_meminfo(), ensuring we drop any spinlocks first. In the case of
object_idr we now also need to hold a ref.
v2 (MattB)
- Also add xe_bo_assert_held()
(cherry picked from commit 4f63d712fa104c3ebefcb289d1e733e86d8698c7) |
| In the Linux kernel, the following vulnerability has been resolved:
tracing/timerlat: Only clear timer if a kthread exists
The timerlat tracer can use user space threads to check for osnoise and
timer latency. If the program using this is killed via a SIGTERM, the
threads are shutdown one at a time and another tracing instance can start
up resetting the threads before they are fully closed. That causes the
hrtimer assigned to the kthread to be shutdown and freed twice when the
dying thread finally closes the file descriptors, causing a use-after-free
bug.
Only cancel the hrtimer if the associated thread is still around. Also add
the interface_lock around the resetting of the tlat_var->kthread.
Note, this is just a quick fix that can be backported to stable. A real
fix is to have a better synchronization between the shutdown of old
threads and the starting of new ones. |
| In the Linux kernel, the following vulnerability has been resolved:
net: microchip: vcap: Fix use-after-free error in kunit test
This is a clear use-after-free error. We remove it, and rely on checking
the return code of vcap_del_rule. |
| In the Linux kernel, the following vulnerability has been resolved:
libfs: fix get_stashed_dentry()
get_stashed_dentry() tries to optimistically retrieve a stashed dentry
from a provided location. It needs to ensure to hold rcu lock before it
dereference the stashed location to prevent UAF issues. Use
rcu_dereference() instead of READ_ONCE() it's effectively equivalent
with some lockdep bells and whistles and it communicates clearly that
this expects rcu protection. |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix double put of @cfile in smb2_set_path_size()
If smb2_compound_op() is called with a valid @cfile and returned
-EINVAL, we need to call cifs_get_writable_path() before retrying it
as the reference of @cfile was already dropped by previous call.
This fixes the following KASAN splat when running fstests generic/013
against Windows Server 2022:
CIFS: Attempting to mount //w22-fs0/scratch
run fstests generic/013 at 2024-09-02 19:48:59
==================================================================
BUG: KASAN: slab-use-after-free in detach_if_pending+0xab/0x200
Write of size 8 at addr ffff88811f1a3730 by task kworker/3:2/176
CPU: 3 UID: 0 PID: 176 Comm: kworker/3:2 Not tainted 6.11.0-rc6 #2
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-2.fc40
04/01/2014
Workqueue: cifsoplockd cifs_oplock_break [cifs]
Call Trace:
<TASK>
dump_stack_lvl+0x5d/0x80
? detach_if_pending+0xab/0x200
print_report+0x156/0x4d9
? detach_if_pending+0xab/0x200
? __virt_addr_valid+0x145/0x300
? __phys_addr+0x46/0x90
? detach_if_pending+0xab/0x200
kasan_report+0xda/0x110
? detach_if_pending+0xab/0x200
detach_if_pending+0xab/0x200
timer_delete+0x96/0xe0
? __pfx_timer_delete+0x10/0x10
? rcu_is_watching+0x20/0x50
try_to_grab_pending+0x46/0x3b0
__cancel_work+0x89/0x1b0
? __pfx___cancel_work+0x10/0x10
? kasan_save_track+0x14/0x30
cifs_close_deferred_file+0x110/0x2c0 [cifs]
? __pfx_cifs_close_deferred_file+0x10/0x10 [cifs]
? __pfx_down_read+0x10/0x10
cifs_oplock_break+0x4c1/0xa50 [cifs]
? __pfx_cifs_oplock_break+0x10/0x10 [cifs]
? lock_is_held_type+0x85/0xf0
? mark_held_locks+0x1a/0x90
process_one_work+0x4c6/0x9f0
? find_held_lock+0x8a/0xa0
? __pfx_process_one_work+0x10/0x10
? lock_acquired+0x220/0x550
? __list_add_valid_or_report+0x37/0x100
worker_thread+0x2e4/0x570
? __kthread_parkme+0xd1/0xf0
? __pfx_worker_thread+0x10/0x10
kthread+0x17f/0x1c0
? kthread+0xda/0x1c0
? __pfx_kthread+0x10/0x10
ret_from_fork+0x31/0x60
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK>
Allocated by task 1118:
kasan_save_stack+0x30/0x50
kasan_save_track+0x14/0x30
__kasan_kmalloc+0xaa/0xb0
cifs_new_fileinfo+0xc8/0x9d0 [cifs]
cifs_atomic_open+0x467/0x770 [cifs]
lookup_open.isra.0+0x665/0x8b0
path_openat+0x4c3/0x1380
do_filp_open+0x167/0x270
do_sys_openat2+0x129/0x160
__x64_sys_creat+0xad/0xe0
do_syscall_64+0xbb/0x1d0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Freed by task 83:
kasan_save_stack+0x30/0x50
kasan_save_track+0x14/0x30
kasan_save_free_info+0x3b/0x70
poison_slab_object+0xe9/0x160
__kasan_slab_free+0x32/0x50
kfree+0xf2/0x300
process_one_work+0x4c6/0x9f0
worker_thread+0x2e4/0x570
kthread+0x17f/0x1c0
ret_from_fork+0x31/0x60
ret_from_fork_asm+0x1a/0x30
Last potentially related work creation:
kasan_save_stack+0x30/0x50
__kasan_record_aux_stack+0xad/0xc0
insert_work+0x29/0xe0
__queue_work+0x5ea/0x760
queue_work_on+0x6d/0x90
_cifsFileInfo_put+0x3f6/0x770 [cifs]
smb2_compound_op+0x911/0x3940 [cifs]
smb2_set_path_size+0x228/0x270 [cifs]
cifs_set_file_size+0x197/0x460 [cifs]
cifs_setattr+0xd9c/0x14b0 [cifs]
notify_change+0x4e3/0x740
do_truncate+0xfa/0x180
vfs_truncate+0x195/0x200
__x64_sys_truncate+0x109/0x150
do_syscall_64+0xbb/0x1d0
entry_SYSCALL_64_after_hwframe+0x77/0x7f |
| In the Linux kernel, the following vulnerability has been resolved:
misc: fastrpc: Fix double free of 'buf' in error path
smatch warning:
drivers/misc/fastrpc.c:1926 fastrpc_req_mmap() error: double free of 'buf'
In fastrpc_req_mmap() error path, the fastrpc buffer is freed in
fastrpc_req_munmap_impl() if unmap is successful.
But in the end, there is an unconditional call to fastrpc_buf_free().
So the above case triggers the double free of fastrpc buf. |
| In the Linux kernel, the following vulnerability has been resolved:
nfsd: fix potential UAF in nfsd4_cb_getattr_release
Once we drop the delegation reference, the fields embedded in it are no
longer safe to access. Do that last. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix a use-after-free when hitting errors inside btrfs_submit_chunk()
[BUG]
There is an internal report that KASAN is reporting use-after-free, with
the following backtrace:
BUG: KASAN: slab-use-after-free in btrfs_check_read_bio+0xa68/0xb70 [btrfs]
Read of size 4 at addr ffff8881117cec28 by task kworker/u16:2/45
CPU: 1 UID: 0 PID: 45 Comm: kworker/u16:2 Not tainted 6.11.0-rc2-next-20240805-default+ #76
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-3-gd478f380-rebuilt.opensuse.org 04/01/2014
Workqueue: btrfs-endio btrfs_end_bio_work [btrfs]
Call Trace:
dump_stack_lvl+0x61/0x80
print_address_description.constprop.0+0x5e/0x2f0
print_report+0x118/0x216
kasan_report+0x11d/0x1f0
btrfs_check_read_bio+0xa68/0xb70 [btrfs]
process_one_work+0xce0/0x12a0
worker_thread+0x717/0x1250
kthread+0x2e3/0x3c0
ret_from_fork+0x2d/0x70
ret_from_fork_asm+0x11/0x20
Allocated by task 20917:
kasan_save_stack+0x37/0x60
kasan_save_track+0x10/0x30
__kasan_slab_alloc+0x7d/0x80
kmem_cache_alloc_noprof+0x16e/0x3e0
mempool_alloc_noprof+0x12e/0x310
bio_alloc_bioset+0x3f0/0x7a0
btrfs_bio_alloc+0x2e/0x50 [btrfs]
submit_extent_page+0x4d1/0xdb0 [btrfs]
btrfs_do_readpage+0x8b4/0x12a0 [btrfs]
btrfs_readahead+0x29a/0x430 [btrfs]
read_pages+0x1a7/0xc60
page_cache_ra_unbounded+0x2ad/0x560
filemap_get_pages+0x629/0xa20
filemap_read+0x335/0xbf0
vfs_read+0x790/0xcb0
ksys_read+0xfd/0x1d0
do_syscall_64+0x6d/0x140
entry_SYSCALL_64_after_hwframe+0x4b/0x53
Freed by task 20917:
kasan_save_stack+0x37/0x60
kasan_save_track+0x10/0x30
kasan_save_free_info+0x37/0x50
__kasan_slab_free+0x4b/0x60
kmem_cache_free+0x214/0x5d0
bio_free+0xed/0x180
end_bbio_data_read+0x1cc/0x580 [btrfs]
btrfs_submit_chunk+0x98d/0x1880 [btrfs]
btrfs_submit_bio+0x33/0x70 [btrfs]
submit_one_bio+0xd4/0x130 [btrfs]
submit_extent_page+0x3ea/0xdb0 [btrfs]
btrfs_do_readpage+0x8b4/0x12a0 [btrfs]
btrfs_readahead+0x29a/0x430 [btrfs]
read_pages+0x1a7/0xc60
page_cache_ra_unbounded+0x2ad/0x560
filemap_get_pages+0x629/0xa20
filemap_read+0x335/0xbf0
vfs_read+0x790/0xcb0
ksys_read+0xfd/0x1d0
do_syscall_64+0x6d/0x140
entry_SYSCALL_64_after_hwframe+0x4b/0x53
[CAUSE]
Although I cannot reproduce the error, the report itself is good enough
to pin down the cause.
The call trace is the regular endio workqueue context, but the
free-by-task trace is showing that during btrfs_submit_chunk() we
already hit a critical error, and is calling btrfs_bio_end_io() to error
out. And the original endio function called bio_put() to free the whole
bio.
This means a double freeing thus causing use-after-free, e.g.:
1. Enter btrfs_submit_bio() with a read bio
The read bio length is 128K, crossing two 64K stripes.
2. The first run of btrfs_submit_chunk()
2.1 Call btrfs_map_block(), which returns 64K
2.2 Call btrfs_split_bio()
Now there are two bios, one referring to the first 64K, the other
referring to the second 64K.
2.3 The first half is submitted.
3. The second run of btrfs_submit_chunk()
3.1 Call btrfs_map_block(), which by somehow failed
Now we call btrfs_bio_end_io() to handle the error
3.2 btrfs_bio_end_io() calls the original endio function
Which is end_bbio_data_read(), and it calls bio_put() for the
original bio.
Now the original bio is freed.
4. The submitted first 64K bio finished
Now we call into btrfs_check_read_bio() and tries to advance the bio
iter.
But since the original bio (thus its iter) is already freed, we
trigger the above use-after free.
And even if the memory is not poisoned/corrupted, we will later call
the original endio function, causing a double freeing.
[FIX]
Instead of calling btrfs_bio_end_io(), call btrfs_orig_bbio_end_io(),
which has the extra check on split bios and do the pr
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe: prevent UAF around preempt fence
The fence lock is part of the queue, therefore in the current design
anything locking the fence should then also hold a ref to the queue to
prevent the queue from being freed.
However, currently it looks like we signal the fence and then drop the
queue ref, but if something is waiting on the fence, the waiter is
kicked to wake up at some later point, where upon waking up it first
grabs the lock before checking the fence state. But if we have already
dropped the queue ref, then the lock might already be freed as part of
the queue, leading to uaf.
To prevent this, move the fence lock into the fence itself so we don't
run into lifetime issues. Alternative might be to have device level
lock, or only release the queue in the fence release callback, however
that might require pushing to another worker to avoid locking issues.
References: https://gitlab.freedesktop.org/drm/xe/kernel/-/issues/2454
References: https://gitlab.freedesktop.org/drm/xe/kernel/-/issues/2342
References: https://gitlab.freedesktop.org/drm/xe/kernel/-/issues/2020
(cherry picked from commit 7116c35aacedc38be6d15bd21b2fc936eed0008b) |
| In the Linux kernel, the following vulnerability has been resolved:
nvme: move stopping keep-alive into nvme_uninit_ctrl()
Commit 4733b65d82bd ("nvme: start keep-alive after admin queue setup")
moves starting keep-alive from nvme_start_ctrl() into
nvme_init_ctrl_finish(), but don't move stopping keep-alive into
nvme_uninit_ctrl(), so keep-alive work can be started and keep pending
after failing to start controller, finally use-after-free is triggered if
nvme host driver is unloaded.
This patch fixes kernel panic when running nvme/004 in case that connection
failure is triggered, by moving stopping keep-alive into nvme_uninit_ctrl().
This way is reasonable because keep-alive is now started in
nvme_init_ctrl_finish(). |
| In the Linux kernel, the following vulnerability has been resolved:
net: ethernet: mtk_wed: fix use-after-free panic in mtk_wed_setup_tc_block_cb()
When there are multiple ap interfaces on one band and with WED on,
turning the interface down will cause a kernel panic on MT798X.
Previously, cb_priv was freed in mtk_wed_setup_tc_block() without
marking NULL,and mtk_wed_setup_tc_block_cb() didn't check the value, too.
Assign NULL after free cb_priv in mtk_wed_setup_tc_block() and check NULL
in mtk_wed_setup_tc_block_cb().
----------
Unable to handle kernel paging request at virtual address 0072460bca32b4f5
Call trace:
mtk_wed_setup_tc_block_cb+0x4/0x38
0xffffffc0794084bc
tcf_block_playback_offloads+0x70/0x1e8
tcf_block_unbind+0x6c/0xc8
...
--------- |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe: Free job before xe_exec_queue_put
Free job depends on job->vm being valid, the last xe_exec_queue_put can
destroy the VM. Prevent UAF by freeing job before xe_exec_queue_put.
(cherry picked from commit 32a42c93b74c8ca6d0915ea3eba21bceff53042f) |
| In the Linux kernel, the following vulnerability has been resolved:
idpf: fix memory leaks and crashes while performing a soft reset
The second tagged commit introduced a UAF, as it removed restoring
q_vector->vport pointers after reinitializating the structures.
This is due to that all queue allocation functions are performed here
with the new temporary vport structure and those functions rewrite
the backpointers to the vport. Then, this new struct is freed and
the pointers start leading to nowhere.
But generally speaking, the current logic is very fragile. It claims
to be more reliable when the system is low on memory, but in fact, it
consumes two times more memory as at the moment of running this
function, there are two vports allocated with their queues and vectors.
Moreover, it claims to prevent the driver from running into "bad state",
but in fact, any error during the rebuild leaves the old vport in the
partially allocated state.
Finally, if the interface is down when the function is called, it always
allocates a new queue set, but when the user decides to enable the
interface later on, vport_open() allocates them once again, IOW there's
a clear memory leak here.
Just don't allocate a new queue set when performing a reset, that solves
crashes and memory leaks. Readd the old queue number and reopen the
interface on rollback - that solves limbo states when the device is left
disabled and/or without HW queues enabled. |
| In the Linux kernel, the following vulnerability has been resolved:
idpf: fix UAFs when destroying the queues
The second tagged commit started sometimes (very rarely, but possible)
throwing WARNs from
net/core/page_pool.c:page_pool_disable_direct_recycling().
Turned out idpf frees interrupt vectors with embedded NAPIs *before*
freeing the queues making page_pools' NAPI pointers lead to freed
memory before these pools are destroyed by libeth.
It's not clear whether there are other accesses to the freed vectors
when destroying the queues, but anyway, we usually free queue/interrupt
vectors only when the queues are destroyed and the NAPIs are guaranteed
to not be referenced anywhere.
Invert the allocation and freeing logic making queue/interrupt vectors
be allocated first and freed last. Vectors don't require queues to be
present, so this is safe. Additionally, this change allows to remove
that useless queue->q_vector pointer cleanup, as vectors are still
valid when freeing the queues (+ both are freed within one function,
so it's not clear why nullify the pointers at all). |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Have format file honor EVENT_FILE_FL_FREED
When eventfs was introduced, special care had to be done to coordinate the
freeing of the file meta data with the files that are exposed to user
space. The file meta data would have a ref count that is set when the file
is created and would be decremented and freed after the last user that
opened the file closed it. When the file meta data was to be freed, it
would set a flag (EVENT_FILE_FL_FREED) to denote that the file is freed,
and any new references made (like new opens or reads) would fail as it is
marked freed. This allowed other meta data to be freed after this flag was
set (under the event_mutex).
All the files that were dynamically created in the events directory had a
pointer to the file meta data and would call event_release() when the last
reference to the user space file was closed. This would be the time that it
is safe to free the file meta data.
A shortcut was made for the "format" file. It's i_private would point to
the "call" entry directly and not point to the file's meta data. This is
because all format files are the same for the same "call", so it was
thought there was no reason to differentiate them. The other files
maintain state (like the "enable", "trigger", etc). But this meant if the
file were to disappear, the "format" file would be unaware of it.
This caused a race that could be trigger via the user_events test (that
would create dynamic events and free them), and running a loop that would
read the user_events format files:
In one console run:
# cd tools/testing/selftests/user_events
# while true; do ./ftrace_test; done
And in another console run:
# cd /sys/kernel/tracing/
# while true; do cat events/user_events/__test_event/format; done 2>/dev/null
With KASAN memory checking, it would trigger a use-after-free bug report
(which was a real bug). This was because the format file was not checking
the file's meta data flag "EVENT_FILE_FL_FREED", so it would access the
event that the file meta data pointed to after the event was freed.
After inspection, there are other locations that were found to not check
the EVENT_FILE_FL_FREED flag when accessing the trace_event_file. Add a
new helper function: event_file_file() that will make sure that the
event_mutex is held, and will return NULL if the trace_event_file has the
EVENT_FILE_FL_FREED flag set. Have the first reference of the struct file
pointer use event_file_file() and check for NULL. Later uses can still use
the event_file_data() helper function if the event_mutex is still held and
was not released since the event_file_file() call. |