| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| iccDEV provides a set of libraries and tools that allow for the interaction, manipulation, and application of ICC color management profiles. Prior to version 2.3.1.3, there is a vulnerability IccCmm.cpp:5793 when reading through index during ICC profile processing. The malformed ICC profile triggers improper array bounds validation in the color management module, resulting in an out-of-bounds read that can lead to memory disclosure or segmentation fault from accessing memory beyond the array boundary. This issue has been patched in version 2.3.1.3. |
| A security vulnerability has been detected in WeKan up to 8.20. This affects the function setBoardOrgs of the file models/boards.js of the component REST API. Such manipulation of the argument item.cardId/item.checklistId/card.boardId leads to improper authorization. The attack may be launched remotely. A high complexity level is associated with this attack. The exploitability is reported as difficult. Upgrading to version 8.21 mitigates this issue. The name of the patch is cabfeed9a68e21c469bf206d8655941444b9912c. It is suggested to upgrade the affected component. |
| web2py versions 2.27.1-stable+timestamp.2023.11.16.08.03.57 and prior contain an open redirect vulnerability. If this vulnerability is exploited, the user may be redirected to an arbitrary website when accessing a specially crafted URL. As a result, the user may become a victim of a phishing attack. |
| The Robin Image Optimizer – Unlimited Image Optimization & WebP Converter plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'Alternative Text' field of a Media Library image in all versions up to, and including, 2.0.2 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with Author-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
| AutoGPT is a platform that allows users to create, deploy, and manage continuous artificial intelligence agents that automate complex workflows. Prior to autogpt-platform-beta-v0.6.46, the AutoGPT platform's Stagehand integration blocks log API keys and authentication secrets in plaintext using logger.info() statements. This occurs in three separate block implementations (StagehandObserveBlock, StagehandActBlock, and StagehandExtractBlock) where the code explicitly calls api_key.get_secret_value() and logs the result. This issue has been patched in autogpt-platform-beta-v0.6.46. |
| AutoGPT is a platform that allows users to create, deploy, and manage continuous artificial intelligence agents that automate complex workflows. Prior to autogpt-platform-beta-v0.6.34, in RSSFeedBlock, the third-party library urllib.request.urlopen is used directly to access the URL, but the input URL is not filtered, which will cause SSRF vulnerability. This issue has been patched in autogpt-platform-beta-v0.6.34. |
| FUXA v1.2.7 contains a hard-coded credential vulnerability in server/api/jwt-helper.js. The application uses a hard-coded secret key to sign and verify JWT Tokens. This allows remote attackers to forge valid admin tokens and bypass authentication to gain full administrative access. |
| In the Linux kernel, the following vulnerability has been resolved:
tipc: fix a null-ptr-deref in tipc_topsrv_accept
syzbot found a crash in tipc_topsrv_accept:
KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f]
Workqueue: tipc_rcv tipc_topsrv_accept
RIP: 0010:kernel_accept+0x22d/0x350 net/socket.c:3487
Call Trace:
<TASK>
tipc_topsrv_accept+0x197/0x280 net/tipc/topsrv.c:460
process_one_work+0x991/0x1610 kernel/workqueue.c:2289
worker_thread+0x665/0x1080 kernel/workqueue.c:2436
kthread+0x2e4/0x3a0 kernel/kthread.c:376
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:306
It was caused by srv->listener that might be set to null by
tipc_topsrv_stop() in net .exit whereas it's still used in
tipc_topsrv_accept() worker.
srv->listener is protected by srv->idr_lock in tipc_topsrv_stop(), so add
a check for srv->listener under srv->idr_lock in tipc_topsrv_accept() to
avoid the null-ptr-deref. To ensure the lsock is not released during the
tipc_topsrv_accept(), move sock_release() after tipc_topsrv_work_stop()
where it's waiting until the tipc_topsrv_accept worker to be done.
Note that sk_callback_lock is used to protect sk->sk_user_data instead of
srv->listener, and it should check srv in tipc_topsrv_listener_data_ready()
instead. This also ensures that no more tipc_topsrv_accept worker will be
started after tipc_conn_close() is called in tipc_topsrv_stop() where it
sets sk->sk_user_data to null. |
| AutoGPT is a platform that allows users to create, deploy, and manage continuous artificial intelligence agents that automate complex workflows. Prior to autogpt-platform-beta-v0.6.34, in SendDiscordFileBlock, the third-party library aiohttp.ClientSession().get is used directly to access the URL, but the input URL is not filtered, which will cause SSRF vulnerability. This issue has been patched in autogpt-platform-beta-v0.6.34. |
| In the Linux kernel, the following vulnerability has been resolved:
soc: aspeed: socinfo: Add kfree for kstrdup
Add kfree() in the later error handling in order to avoid memory leak. |
| A flaw has been found in WeKan up to 8.20. Affected is the function applyWipLimit of the file models/lists.js of the component Attachment Storage Handler. Executing a manipulation can lead to improper access controls. The attack can be executed remotely. Upgrading to version 8.21 is able to address this issue. This patch is called 8c0b4f79d8582932528ec2fdf2a4487c86770fb9. It is recommended to upgrade the affected component. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: reject invalid reloc tree root keys with stack dump
[BUG]
Syzbot reported a crash that an ASSERT() got triggered inside
prepare_to_merge().
That ASSERT() makes sure the reloc tree is properly pointed back by its
subvolume tree.
[CAUSE]
After more debugging output, it turns out we had an invalid reloc tree:
BTRFS error (device loop1): reloc tree mismatch, root 8 has no reloc root, expect reloc root key (-8, 132, 8) gen 17
Note the above root key is (TREE_RELOC_OBJECTID, ROOT_ITEM,
QUOTA_TREE_OBJECTID), meaning it's a reloc tree for quota tree.
But reloc trees can only exist for subvolumes, as for non-subvolume
trees, we just COW the involved tree block, no need to create a reloc
tree since those tree blocks won't be shared with other trees.
Only subvolumes tree can share tree blocks with other trees (thus they
have BTRFS_ROOT_SHAREABLE flag).
Thus this new debug output proves my previous assumption that corrupted
on-disk data can trigger that ASSERT().
[FIX]
Besides the dedicated fix and the graceful exit, also let tree-checker to
check such root keys, to make sure reloc trees can only exist for subvolumes. |
| A maliciously crafted RGB file, when parsed through Autodesk 3ds Max, can force a Memory Corruption vulnerability. A malicious actor can leverage this vulnerability to execute arbitrary code in the context of the current process. |
| A maliciously crafted RGB file, when parsed through Autodesk 3ds Max, can force a Memory Corruption vulnerability. A malicious actor can leverage this vulnerability to execute arbitrary code in the context of the current process. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix deadlock in wait_current_trans() due to ignored transaction type
When wait_current_trans() is called during start_transaction(), it
currently waits for a blocked transaction without considering whether
the given transaction type actually needs to wait for that particular
transaction state. The btrfs_blocked_trans_types[] array already defines
which transaction types should wait for which transaction states, but
this check was missing in wait_current_trans().
This can lead to a deadlock scenario involving two transactions and
pending ordered extents:
1. Transaction A is in TRANS_STATE_COMMIT_DOING state
2. A worker processing an ordered extent calls start_transaction()
with TRANS_JOIN
3. join_transaction() returns -EBUSY because Transaction A is in
TRANS_STATE_COMMIT_DOING
4. Transaction A moves to TRANS_STATE_UNBLOCKED and completes
5. A new Transaction B is created (TRANS_STATE_RUNNING)
6. The ordered extent from step 2 is added to Transaction B's
pending ordered extents
7. Transaction B immediately starts commit by another task and
enters TRANS_STATE_COMMIT_START
8. The worker finally reaches wait_current_trans(), sees Transaction B
in TRANS_STATE_COMMIT_START (a blocked state), and waits
unconditionally
9. However, TRANS_JOIN should NOT wait for TRANS_STATE_COMMIT_START
according to btrfs_blocked_trans_types[]
10. Transaction B is waiting for pending ordered extents to complete
11. Deadlock: Transaction B waits for ordered extent, ordered extent
waits for Transaction B
This can be illustrated by the following call stacks:
CPU0 CPU1
btrfs_finish_ordered_io()
start_transaction(TRANS_JOIN)
join_transaction()
# -EBUSY (Transaction A is
# TRANS_STATE_COMMIT_DOING)
# Transaction A completes
# Transaction B created
# ordered extent added to
# Transaction B's pending list
btrfs_commit_transaction()
# Transaction B enters
# TRANS_STATE_COMMIT_START
# waiting for pending ordered
# extents
wait_current_trans()
# waits for Transaction B
# (should not wait!)
Task bstore_kv_sync in btrfs_commit_transaction waiting for ordered
extents:
__schedule+0x2e7/0x8a0
schedule+0x64/0xe0
btrfs_commit_transaction+0xbf7/0xda0 [btrfs]
btrfs_sync_file+0x342/0x4d0 [btrfs]
__x64_sys_fdatasync+0x4b/0x80
do_syscall_64+0x33/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Task kworker in wait_current_trans waiting for transaction commit:
Workqueue: btrfs-syno_nocow btrfs_work_helper [btrfs]
__schedule+0x2e7/0x8a0
schedule+0x64/0xe0
wait_current_trans+0xb0/0x110 [btrfs]
start_transaction+0x346/0x5b0 [btrfs]
btrfs_finish_ordered_io.isra.0+0x49b/0x9c0 [btrfs]
btrfs_work_helper+0xe8/0x350 [btrfs]
process_one_work+0x1d3/0x3c0
worker_thread+0x4d/0x3e0
kthread+0x12d/0x150
ret_from_fork+0x1f/0x30
Fix this by passing the transaction type to wait_current_trans() and
checking btrfs_blocked_trans_types[cur_trans->state] against the given
type before deciding to wait. This ensures that transaction types which
are allowed to join during certain blocked states will not unnecessarily
wait and cause deadlocks. |
| In the Linux kernel, the following vulnerability has been resolved:
phy: qcom-qusb2: Fix NULL pointer dereference on early suspend
Enabling runtime PM before attaching the QPHY instance as driver data
can lead to a NULL pointer dereference in runtime PM callbacks that
expect valid driver data. There is a small window where the suspend
callback may run after PM runtime enabling and before runtime forbid.
This causes a sporadic crash during boot:
```
Unable to handle kernel NULL pointer dereference at virtual address 00000000000000a1
[...]
CPU: 0 UID: 0 PID: 11 Comm: kworker/0:1 Not tainted 6.16.7+ #116 PREEMPT
Workqueue: pm pm_runtime_work
pstate: 20000005 (nzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : qusb2_phy_runtime_suspend+0x14/0x1e0 [phy_qcom_qusb2]
lr : pm_generic_runtime_suspend+0x2c/0x44
[...]
```
Attach the QPHY instance as driver data before enabling runtime PM to
prevent NULL pointer dereference in runtime PM callbacks.
Reorder pm_runtime_enable() and pm_runtime_forbid() to prevent a
short window where an unnecessary runtime suspend can occur.
Use the devres-managed version to ensure PM runtime is symmetrically
disabled during driver removal for proper cleanup. |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: xilinx: xdma: Fix regmap max_register
The max_register field is assigned the size of the register memory
region instead of the offset of the last register.
The result is that reading from the regmap via debugfs can cause
a segmentation fault:
tail /sys/kernel/debug/regmap/xdma.1.auto/registers
Unable to handle kernel paging request at virtual address ffff800082f70000
Mem abort info:
ESR = 0x0000000096000007
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x07: level 3 translation fault
[...]
Call trace:
regmap_mmio_read32le+0x10/0x30
_regmap_bus_reg_read+0x74/0xc0
_regmap_read+0x68/0x198
regmap_read+0x54/0x88
regmap_read_debugfs+0x140/0x380
regmap_map_read_file+0x30/0x48
full_proxy_read+0x68/0xc8
vfs_read+0xcc/0x310
ksys_read+0x7c/0x120
__arm64_sys_read+0x24/0x40
invoke_syscall.constprop.0+0x64/0x108
do_el0_svc+0xb0/0xd8
el0_svc+0x38/0x130
el0t_64_sync_handler+0x120/0x138
el0t_64_sync+0x194/0x198
Code: aa1e03e9 d503201f f9400000 8b214000 (b9400000)
---[ end trace 0000000000000000 ]---
note: tail[1217] exited with irqs disabled
note: tail[1217] exited with preempt_count 1
Segmentation fault |
| In the Linux kernel, the following vulnerability has been resolved:
phy: stm32-usphyc: Fix off by one in probe()
The "index" variable is used as an index into the usbphyc->phys[] array
which has usbphyc->nphys elements. So if it is equal to usbphyc->nphys
then it is one element out of bounds. The "index" comes from the
device tree so it's data that we trust and it's unlikely to be wrong,
however it's obviously still worth fixing the bug. Change the > to >=. |
| In the Linux kernel, the following vulnerability has been resolved:
w1: therm: Fix off-by-one buffer overflow in alarms_store
The sysfs buffer passed to alarms_store() is allocated with 'size + 1'
bytes and a NUL terminator is appended. However, the 'size' argument
does not account for this extra byte. The original code then allocated
'size' bytes and used strcpy() to copy 'buf', which always writes one
byte past the allocated buffer since strcpy() copies until the NUL
terminator at index 'size'.
Fix this by parsing the 'buf' parameter directly using simple_strtoll()
without allocating any intermediate memory or string copying. This
removes the overflow while simplifying the code. |
| In the Linux kernel, the following vulnerability has been resolved:
iio: imu: st_lsm6dsx: fix iio_chan_spec for sensors without event detection
The st_lsm6dsx_acc_channels array of struct iio_chan_spec has a non-NULL
event_spec field, indicating support for IIO events. However, event
detection is not supported for all sensors, and if userspace tries to
configure accelerometer wakeup events on a sensor device that does not
support them (e.g. LSM6DS0), st_lsm6dsx_write_event() dereferences a NULL
pointer when trying to write to the wakeup register.
Define an additional struct iio_chan_spec array whose members have a NULL
event_spec field, and use this array instead of st_lsm6dsx_acc_channels for
sensors without event detection capability. |