| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In Eclipse Vert.x versions [4.0.0, 4.5.21] and [5.0.0, 5.0.4], a StaticHandler configuration for restricting access to hidden files fails to restrict access to hidden directories, allowing unauthorized users to retrieve files within them (e.g. '.git/config'). |
| In the Linux kernel, the following vulnerability has been resolved:
atm: atmtcp: Prevent arbitrary write in atmtcp_recv_control().
syzbot reported the splat below. [0]
When atmtcp_v_open() or atmtcp_v_close() is called via connect()
or close(), atmtcp_send_control() is called to send an in-kernel
special message.
The message has ATMTCP_HDR_MAGIC in atmtcp_control.hdr.length.
Also, a pointer of struct atm_vcc is set to atmtcp_control.vcc.
The notable thing is struct atmtcp_control is uAPI but has a
space for an in-kernel pointer.
struct atmtcp_control {
struct atmtcp_hdr hdr; /* must be first */
...
atm_kptr_t vcc; /* both directions */
...
} __ATM_API_ALIGN;
typedef struct { unsigned char _[8]; } __ATM_API_ALIGN atm_kptr_t;
The special message is processed in atmtcp_recv_control() called
from atmtcp_c_send().
atmtcp_c_send() is vcc->dev->ops->send() and called from 2 paths:
1. .ndo_start_xmit() (vcc->send() == atm_send_aal0())
2. vcc_sendmsg()
The problem is sendmsg() does not validate the message length and
userspace can abuse atmtcp_recv_control() to overwrite any kptr
by atmtcp_control.
Let's add a new ->pre_send() hook to validate messages from sendmsg().
[0]:
Oops: general protection fault, probably for non-canonical address 0xdffffc00200000ab: 0000 [#1] SMP KASAN PTI
KASAN: probably user-memory-access in range [0x0000000100000558-0x000000010000055f]
CPU: 0 UID: 0 PID: 5865 Comm: syz-executor331 Not tainted 6.17.0-rc1-syzkaller-00215-gbab3ce404553 #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/12/2025
RIP: 0010:atmtcp_recv_control drivers/atm/atmtcp.c:93 [inline]
RIP: 0010:atmtcp_c_send+0x1da/0x950 drivers/atm/atmtcp.c:297
Code: 4d 8d 75 1a 4c 89 f0 48 c1 e8 03 42 0f b6 04 20 84 c0 0f 85 15 06 00 00 41 0f b7 1e 4d 8d b7 60 05 00 00 4c 89 f0 48 c1 e8 03 <42> 0f b6 04 20 84 c0 0f 85 13 06 00 00 66 41 89 1e 4d 8d 75 1c 4c
RSP: 0018:ffffc90003f5f810 EFLAGS: 00010203
RAX: 00000000200000ab RBX: 0000000000000000 RCX: 0000000000000000
RDX: ffff88802a510000 RSI: 00000000ffffffff RDI: ffff888030a6068c
RBP: ffff88802699fb40 R08: ffff888030a606eb R09: 1ffff1100614c0dd
R10: dffffc0000000000 R11: ffffffff8718fc40 R12: dffffc0000000000
R13: ffff888030a60680 R14: 000000010000055f R15: 00000000ffffffff
FS: 00007f8d7e9236c0(0000) GS:ffff888125c1c000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000000000045ad50 CR3: 0000000075bde000 CR4: 00000000003526f0
Call Trace:
<TASK>
vcc_sendmsg+0xa10/0xc60 net/atm/common.c:645
sock_sendmsg_nosec net/socket.c:714 [inline]
__sock_sendmsg+0x219/0x270 net/socket.c:729
____sys_sendmsg+0x505/0x830 net/socket.c:2614
___sys_sendmsg+0x21f/0x2a0 net/socket.c:2668
__sys_sendmsg net/socket.c:2700 [inline]
__do_sys_sendmsg net/socket.c:2705 [inline]
__se_sys_sendmsg net/socket.c:2703 [inline]
__x64_sys_sendmsg+0x19b/0x260 net/socket.c:2703
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f8d7e96a4a9
Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 51 18 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b0 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007f8d7e923198 EFLAGS: 00000246 ORIG_RAX: 000000000000002e
RAX: ffffffffffffffda RBX: 00007f8d7e9f4308 RCX: 00007f8d7e96a4a9
RDX: 0000000000000000 RSI: 0000200000000240 RDI: 0000000000000005
RBP: 00007f8d7e9f4300 R08: 65732f636f72702f R09: 65732f636f72702f
R10: 65732f636f72702f R11: 0000000000000246 R12: 00007f8d7e9c10ac
R13: 00007f8d7e9231a0 R14: 0000200000000200 R15: 0000200000000250
</TASK>
Modules linked in: |
| WeGIA is a web manager for charitable institutions. Prior to 3.6.2, The web application is vulnerable to clickjacking attacks. The WeGIA application does not send any defensive HTTP headers related to framing protection. In particular, X-Frame-Options is missing andContent-Security-Policy with frame-ancestors directive is not configured. Because of this, an attacker can load any WeGIA page inside a malicious HTML document, overlay deceptive elements, hide real buttons, or force accidental interaction with sensitive workflows. This vulnerability is fixed in 3.6.2. |
| Improper Control of Filename for Include/Require Statement in PHP Program ('PHP Remote File Inclusion') vulnerability in AncoraThemes Tourimo tourimo allows PHP Local File Inclusion.This issue affects Tourimo: from n/a through <= 1.2.3. |
| In the Linux kernel, the following vulnerability has been resolved:
xfs: do not propagate ENODATA disk errors into xattr code
ENODATA (aka ENOATTR) has a very specific meaning in the xfs xattr code;
namely, that the requested attribute name could not be found.
However, a medium error from disk may also return ENODATA. At best,
this medium error may escape to userspace as "attribute not found"
when in fact it's an IO (disk) error.
At worst, we may oops in xfs_attr_leaf_get() when we do:
error = xfs_attr_leaf_hasname(args, &bp);
if (error == -ENOATTR) {
xfs_trans_brelse(args->trans, bp);
return error;
}
because an ENODATA/ENOATTR error from disk leaves us with a null bp,
and the xfs_trans_brelse will then null-deref it.
As discussed on the list, we really need to modify the lower level
IO functions to trap all disk errors and ensure that we don't let
unique errors like this leak up into higher xfs functions - many
like this should be remapped to EIO.
However, this patch directly addresses a reported bug in the xattr
code, and should be safe to backport to stable kernels. A larger-scope
patch to handle more unique errors at lower levels can follow later.
(Note, prior to 07120f1abdff we did not oops, but we did return the
wrong error code to userspace.) |
| Improper Control of Filename for Include/Require Statement in PHP Program ('PHP Remote File Inclusion') vulnerability in AncoraThemes Sanger sanger allows PHP Local File Inclusion.This issue affects Sanger: from n/a through <= 1.24.0. |
| Improper Control of Filename for Include/Require Statement in PHP Program ('PHP Remote File Inclusion') vulnerability in AncoraThemes Playful playful allows PHP Local File Inclusion.This issue affects Playful: from n/a through <= 1.19.0. |
| GraphQL Modules is a toolset of libraries and guidelines dedicated to create reusable, maintainable, testable and extendable modules out of your GraphQL server. From 2.2.1 to before 2.4.1 and 3.1.1, when 2 or more parallel requests are made which trigger the same service, the context of the requests is mixed up in the service when the context is injected via @ExecutionContext(). ExecutionContext is often used to pass authentication tokens from incoming requests to services loading data from backend APIs. This vulnerability is fixed in 2.4.1 and 3.1.1. |
| Improper Control of Filename for Include/Require Statement in PHP Program ('PHP Remote File Inclusion') vulnerability in AncoraThemes The Flash theflash allows PHP Local File Inclusion.This issue affects The Flash: from n/a through <= 1.15. |
| Improper Control of Filename for Include/Require Statement in PHP Program ('PHP Remote File Inclusion') vulnerability in AncoraThemes Pathfinder pathfinder allows PHP Local File Inclusion.This issue affects Pathfinder: from n/a through <= 1.16. |
| Improper Control of Filename for Include/Require Statement in PHP Program ('PHP Remote File Inclusion') vulnerability in AncoraThemes Festy festy allows PHP Local File Inclusion.This issue affects Festy: from n/a through <= 1.13.0. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/vmscape: Add conditional IBPB mitigation
VMSCAPE is a vulnerability that exploits insufficient branch predictor
isolation between a guest and a userspace hypervisor (like QEMU). Existing
mitigations already protect kernel/KVM from a malicious guest. Userspace
can additionally be protected by flushing the branch predictors after a
VMexit.
Since it is the userspace that consumes the poisoned branch predictors,
conditionally issue an IBPB after a VMexit and before returning to
userspace. Workloads that frequently switch between hypervisor and
userspace will incur the most overhead from the new IBPB.
This new IBPB is not integrated with the existing IBPB sites. For
instance, a task can use the existing speculation control prctl() to
get an IBPB at context switch time. With this implementation, the
IBPB is doubled up: one at context switch and another before running
userspace.
The intent is to integrate and optimize these cases post-embargo.
[ dhansen: elaborate on suboptimal IBPB solution ] |
| In the Linux kernel, the following vulnerability has been resolved:
bus: mhi: host: Detect events pointing to unexpected TREs
When a remote device sends a completion event to the host, it contains a
pointer to the consumed TRE. The host uses this pointer to process all of
the TREs between it and the host's local copy of the ring's read pointer.
This works when processing completion for chained transactions, but can
lead to nasty results if the device sends an event for a single-element
transaction with a read pointer that is multiple elements ahead of the
host's read pointer.
For instance, if the host accesses an event ring while the device is
updating it, the pointer inside of the event might still point to an old
TRE. If the host uses the channel's xfer_cb() to directly free the buffer
pointed to by the TRE, the buffer will be double-freed.
This behavior was observed on an ep that used upstream EP stack without
'commit 6f18d174b73d ("bus: mhi: ep: Update read pointer only after buffer
is written")'. Where the device updated the events ring pointer before
updating the event contents, so it left a window where the host was able to
access the stale data the event pointed to, before the device had the
chance to update them. The usual pattern was that the host received an
event pointing to a TRE that is not immediately after the last processed
one, so it got treated as if it was a chained transaction, processing all
of the TREs in between the two read pointers.
This commit aims to harden the host by ensuring transactions where the
event points to a TRE that isn't local_rp + 1 are chained.
[mani: added stable tag and reworded commit message] |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: ufs: exynos: Fix programming of HCI_UTRL_NEXUS_TYPE
On Google gs101, the number of UTP transfer request slots (nutrs) is 32,
and in this case the driver ends up programming the UTRL_NEXUS_TYPE
incorrectly as 0.
This is because the left hand side of the shift is 1, which is of type
int, i.e. 31 bits wide. Shifting by more than that width results in
undefined behaviour.
Fix this by switching to the BIT() macro, which applies correct type
casting as required. This ensures the correct value is written to
UTRL_NEXUS_TYPE (0xffffffff on gs101), and it also fixes a UBSAN shift
warning:
UBSAN: shift-out-of-bounds in drivers/ufs/host/ufs-exynos.c:1113:21
shift exponent 32 is too large for 32-bit type 'int'
For consistency, apply the same change to the nutmrs / UTMRL_NEXUS_TYPE
write. |
| In the Linux kernel, the following vulnerability has been resolved:
soc: qcom: mdt_loader: Ensure we don't read past the ELF header
When the MDT loader is used in remoteproc, the ELF header is sanitized
beforehand, but that's not necessary the case for other clients.
Validate the size of the firmware buffer to ensure that we don't read
past the end as we iterate over the header. e_phentsize and e_shentsize
are validated as well, to ensure that the assumptions about step size in
the traversal are valid. |
| Skipper is an HTTP router and reverse proxy for service composition. The default skipper configuration before 0.23.0 was -lua-sources=inline,file. The problem starts if untrusted users can create lua filters, because of -lua-sources=inline , for example through a Kubernetes Ingress resource. The configuration inline allows these user to create a script that is able to read the filesystem accessible to the skipper process and if the user has access to read the logs, they an read skipper secrets. This vulnerability is fixed in 0.23.0. |
| In the Linux kernel, the following vulnerability has been resolved:
PCI: endpoint: Fix configfs group list head handling
Doing a list_del() on the epf_group field of struct pci_epf_driver in
pci_epf_remove_cfs() is not correct as this field is a list head, not
a list entry. This list_del() call triggers a KASAN warning when an
endpoint function driver which has a configfs attribute group is torn
down:
==================================================================
BUG: KASAN: slab-use-after-free in pci_epf_remove_cfs+0x17c/0x198
Write of size 8 at addr ffff00010f4a0d80 by task rmmod/319
CPU: 3 UID: 0 PID: 319 Comm: rmmod Not tainted 6.16.0-rc2 #1 NONE
Hardware name: Radxa ROCK 5B (DT)
Call trace:
show_stack+0x2c/0x84 (C)
dump_stack_lvl+0x70/0x98
print_report+0x17c/0x538
kasan_report+0xb8/0x190
__asan_report_store8_noabort+0x20/0x2c
pci_epf_remove_cfs+0x17c/0x198
pci_epf_unregister_driver+0x18/0x30
nvmet_pci_epf_cleanup_module+0x24/0x30 [nvmet_pci_epf]
__arm64_sys_delete_module+0x264/0x424
invoke_syscall+0x70/0x260
el0_svc_common.constprop.0+0xac/0x230
do_el0_svc+0x40/0x58
el0_svc+0x48/0xdc
el0t_64_sync_handler+0x10c/0x138
el0t_64_sync+0x198/0x19c
...
Remove this incorrect list_del() call from pci_epf_remove_cfs(). |
| In the Linux kernel, the following vulnerability has been resolved:
jbd2: prevent softlockup in jbd2_log_do_checkpoint()
Both jbd2_log_do_checkpoint() and jbd2_journal_shrink_checkpoint_list()
periodically release j_list_lock after processing a batch of buffers to
avoid long hold times on the j_list_lock. However, since both functions
contend for j_list_lock, the combined time spent waiting and processing
can be significant.
jbd2_journal_shrink_checkpoint_list() explicitly calls cond_resched() when
need_resched() is true to avoid softlockups during prolonged operations.
But jbd2_log_do_checkpoint() only exits its loop when need_resched() is
true, relying on potentially sleeping functions like __flush_batch() or
wait_on_buffer() to trigger rescheduling. If those functions do not sleep,
the kernel may hit a softlockup.
watchdog: BUG: soft lockup - CPU#3 stuck for 156s! [kworker/u129:2:373]
CPU: 3 PID: 373 Comm: kworker/u129:2 Kdump: loaded Not tainted 6.6.0+ #10
Hardware name: Huawei TaiShan 2280 /BC11SPCD, BIOS 1.27 06/13/2017
Workqueue: writeback wb_workfn (flush-7:2)
pstate: 20000005 (nzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : native_queued_spin_lock_slowpath+0x358/0x418
lr : jbd2_log_do_checkpoint+0x31c/0x438 [jbd2]
Call trace:
native_queued_spin_lock_slowpath+0x358/0x418
jbd2_log_do_checkpoint+0x31c/0x438 [jbd2]
__jbd2_log_wait_for_space+0xfc/0x2f8 [jbd2]
add_transaction_credits+0x3bc/0x418 [jbd2]
start_this_handle+0xf8/0x560 [jbd2]
jbd2__journal_start+0x118/0x228 [jbd2]
__ext4_journal_start_sb+0x110/0x188 [ext4]
ext4_do_writepages+0x3dc/0x740 [ext4]
ext4_writepages+0xa4/0x190 [ext4]
do_writepages+0x94/0x228
__writeback_single_inode+0x48/0x318
writeback_sb_inodes+0x204/0x590
__writeback_inodes_wb+0x54/0xf8
wb_writeback+0x2cc/0x3d8
wb_do_writeback+0x2e0/0x2f8
wb_workfn+0x80/0x2a8
process_one_work+0x178/0x3e8
worker_thread+0x234/0x3b8
kthread+0xf0/0x108
ret_from_fork+0x10/0x20
So explicitly call cond_resched() in jbd2_log_do_checkpoint() to avoid
softlockup. |
| WeGIA is a web manager for charitable institutions. Prior to 3.6.2, an Open Redirect vulnerability was identified in the /WeGIA/controle/control.php endpoint of the WeGIA application, specifically through the nextPage parameter when combined with metodo=listarTodos and nomeClasse=TipoSaidaControle. The application fails to validate or restrict the nextPage parameter, allowing attackers to redirect users to arbitrary external websites. This can be abused for phishing attacks, credential theft, malware distribution, and social engineering using the trusted WeGIA domain. This vulnerability is fixed in 3.6.2. |
| SiYuan is self-hosted, open source personal knowledge management software. Prior to 3.5.4-dev2, a Stored Cross-Site Scripting (XSS) vulnerability exists in SiYuan Note. The application does not sanitize uploaded SVG files. If a user uploads and views a malicious SVG file (e.g., imported from an untrusted source), arbitrary JavaScript code is executed in the context of their authenticated session. This vulnerability is fixed in 3.5.4-dev2. |