| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
tls: fix use-after-free on failed backlog decryption
When the decrypt request goes to the backlog and crypto_aead_decrypt
returns -EBUSY, tls_do_decryption will wait until all async
decryptions have completed. If one of them fails, tls_do_decryption
will return -EBADMSG and tls_decrypt_sg jumps to the error path,
releasing all the pages. But the pages have been passed to the async
callback, and have already been released by tls_decrypt_done.
The only true async case is when crypto_aead_decrypt returns
-EINPROGRESS. With -EBUSY, we already waited so we can tell
tls_sw_recvmsg that the data is available for immediate copy, but we
need to notify tls_decrypt_sg (via the new ->async_done flag) that the
memory has already been released. |
| Use after free in Windows DirectX allows an authorized attacker to elevate privileges locally. |
| Use after free in Windows Broadcast DVR User Service allows an authorized attacker to elevate privileges locally. |
| A use-after-free vulnerability in the Linux kernel's netfilter: nf_tables component can be exploited to achieve local privilege escalation.
Addition and removal of rules from chain bindings within the same transaction causes leads to use-after-free.
We recommend upgrading past commit f15f29fd4779be8a418b66e9d52979bb6d6c2325. |
| Use after free in Microsoft Office Excel allows an unauthorized attacker to execute code locally. |
| Use after free in Microsoft Office Word allows an unauthorized attacker to execute code locally. |
| Use after free in Windows Ancillary Function Driver for WinSock allows an authorized attacker to elevate privileges locally. |
| Substance3D - Stager versions 3.1.5 and earlier are affected by a Use After Free vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
| Substance3D - Stager versions 3.1.5 and earlier are affected by a Use After Free vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: Fix warning and UAF when destroy the MR list
If the MR allocate failed, the MR recovery work not initialized
and list not cleared. Then will be warning and UAF when release
the MR:
WARNING: CPU: 4 PID: 824 at kernel/workqueue.c:3066 __flush_work.isra.0+0xf7/0x110
CPU: 4 PID: 824 Comm: mount.cifs Not tainted 6.1.0-rc5+ #82
RIP: 0010:__flush_work.isra.0+0xf7/0x110
Call Trace:
<TASK>
__cancel_work_timer+0x2ba/0x2e0
smbd_destroy+0x4e1/0x990
_smbd_get_connection+0x1cbd/0x2110
smbd_get_connection+0x21/0x40
cifs_get_tcp_session+0x8ef/0xda0
mount_get_conns+0x60/0x750
cifs_mount+0x103/0xd00
cifs_smb3_do_mount+0x1dd/0xcb0
smb3_get_tree+0x1d5/0x300
vfs_get_tree+0x41/0xf0
path_mount+0x9b3/0xdd0
__x64_sys_mount+0x190/0x1d0
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
BUG: KASAN: use-after-free in smbd_destroy+0x4fc/0x990
Read of size 8 at addr ffff88810b156a08 by task mount.cifs/824
CPU: 4 PID: 824 Comm: mount.cifs Tainted: G W 6.1.0-rc5+ #82
Call Trace:
dump_stack_lvl+0x34/0x44
print_report+0x171/0x472
kasan_report+0xad/0x130
smbd_destroy+0x4fc/0x990
_smbd_get_connection+0x1cbd/0x2110
smbd_get_connection+0x21/0x40
cifs_get_tcp_session+0x8ef/0xda0
mount_get_conns+0x60/0x750
cifs_mount+0x103/0xd00
cifs_smb3_do_mount+0x1dd/0xcb0
smb3_get_tree+0x1d5/0x300
vfs_get_tree+0x41/0xf0
path_mount+0x9b3/0xdd0
__x64_sys_mount+0x190/0x1d0
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
Allocated by task 824:
kasan_save_stack+0x1e/0x40
kasan_set_track+0x21/0x30
__kasan_kmalloc+0x7a/0x90
_smbd_get_connection+0x1b6f/0x2110
smbd_get_connection+0x21/0x40
cifs_get_tcp_session+0x8ef/0xda0
mount_get_conns+0x60/0x750
cifs_mount+0x103/0xd00
cifs_smb3_do_mount+0x1dd/0xcb0
smb3_get_tree+0x1d5/0x300
vfs_get_tree+0x41/0xf0
path_mount+0x9b3/0xdd0
__x64_sys_mount+0x190/0x1d0
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
Freed by task 824:
kasan_save_stack+0x1e/0x40
kasan_set_track+0x21/0x30
kasan_save_free_info+0x2a/0x40
____kasan_slab_free+0x143/0x1b0
__kmem_cache_free+0xc8/0x330
_smbd_get_connection+0x1c6a/0x2110
smbd_get_connection+0x21/0x40
cifs_get_tcp_session+0x8ef/0xda0
mount_get_conns+0x60/0x750
cifs_mount+0x103/0xd00
cifs_smb3_do_mount+0x1dd/0xcb0
smb3_get_tree+0x1d5/0x300
vfs_get_tree+0x41/0xf0
path_mount+0x9b3/0xdd0
__x64_sys_mount+0x190/0x1d0
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
Let's initialize the MR recovery work before MR allocate to prevent
the warning, remove the MRs from the list to prevent the UAF. |
| In the Linux kernel, the following vulnerability has been resolved:
firewire: net: fix use after free in fwnet_finish_incoming_packet()
The netif_rx() function frees the skb so we can't dereference it to
save the skb->len. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: fix use-after-free bug in brcmf_netdev_start_xmit()
> ret = brcmf_proto_tx_queue_data(drvr, ifp->ifidx, skb);
may be schedule, and then complete before the line
> ndev->stats.tx_bytes += skb->len;
[ 46.912801] ==================================================================
[ 46.920552] BUG: KASAN: use-after-free in brcmf_netdev_start_xmit+0x718/0x8c8 [brcmfmac]
[ 46.928673] Read of size 4 at addr ffffff803f5882e8 by task systemd-resolve/328
[ 46.935991]
[ 46.937514] CPU: 1 PID: 328 Comm: systemd-resolve Tainted: G O 5.4.199-[REDACTED] #1
[ 46.947255] Hardware name: [REDACTED]
[ 46.954568] Call trace:
[ 46.957037] dump_backtrace+0x0/0x2b8
[ 46.960719] show_stack+0x24/0x30
[ 46.964052] dump_stack+0x128/0x194
[ 46.967557] print_address_description.isra.0+0x64/0x380
[ 46.972877] __kasan_report+0x1d4/0x240
[ 46.976723] kasan_report+0xc/0x18
[ 46.980138] __asan_report_load4_noabort+0x18/0x20
[ 46.985027] brcmf_netdev_start_xmit+0x718/0x8c8 [brcmfmac]
[ 46.990613] dev_hard_start_xmit+0x1bc/0xda0
[ 46.994894] sch_direct_xmit+0x198/0xd08
[ 46.998827] __qdisc_run+0x37c/0x1dc0
[ 47.002500] __dev_queue_xmit+0x1528/0x21f8
[ 47.006692] dev_queue_xmit+0x24/0x30
[ 47.010366] neigh_resolve_output+0x37c/0x678
[ 47.014734] ip_finish_output2+0x598/0x2458
[ 47.018927] __ip_finish_output+0x300/0x730
[ 47.023118] ip_output+0x2e0/0x430
[ 47.026530] ip_local_out+0x90/0x140
[ 47.030117] igmpv3_sendpack+0x14c/0x228
[ 47.034049] igmpv3_send_cr+0x384/0x6b8
[ 47.037895] igmp_ifc_timer_expire+0x4c/0x118
[ 47.042262] call_timer_fn+0x1cc/0xbe8
[ 47.046021] __run_timers+0x4d8/0xb28
[ 47.049693] run_timer_softirq+0x24/0x40
[ 47.053626] __do_softirq+0x2c0/0x117c
[ 47.057387] irq_exit+0x2dc/0x388
[ 47.060715] __handle_domain_irq+0xb4/0x158
[ 47.064908] gic_handle_irq+0x58/0xb0
[ 47.068581] el0_irq_naked+0x50/0x5c
[ 47.072162]
[ 47.073665] Allocated by task 328:
[ 47.077083] save_stack+0x24/0xb0
[ 47.080410] __kasan_kmalloc.isra.0+0xc0/0xe0
[ 47.084776] kasan_slab_alloc+0x14/0x20
[ 47.088622] kmem_cache_alloc+0x15c/0x468
[ 47.092643] __alloc_skb+0xa4/0x498
[ 47.096142] igmpv3_newpack+0x158/0xd78
[ 47.099987] add_grhead+0x210/0x288
[ 47.103485] add_grec+0x6b0/0xb70
[ 47.106811] igmpv3_send_cr+0x2e0/0x6b8
[ 47.110657] igmp_ifc_timer_expire+0x4c/0x118
[ 47.115027] call_timer_fn+0x1cc/0xbe8
[ 47.118785] __run_timers+0x4d8/0xb28
[ 47.122457] run_timer_softirq+0x24/0x40
[ 47.126389] __do_softirq+0x2c0/0x117c
[ 47.130142]
[ 47.131643] Freed by task 180:
[ 47.134712] save_stack+0x24/0xb0
[ 47.138041] __kasan_slab_free+0x108/0x180
[ 47.142146] kasan_slab_free+0x10/0x18
[ 47.145904] slab_free_freelist_hook+0xa4/0x1b0
[ 47.150444] kmem_cache_free+0x8c/0x528
[ 47.154292] kfree_skbmem+0x94/0x108
[ 47.157880] consume_skb+0x10c/0x5a8
[ 47.161466] __dev_kfree_skb_any+0x88/0xa0
[ 47.165598] brcmu_pkt_buf_free_skb+0x44/0x68 [brcmutil]
[ 47.171023] brcmf_txfinalize+0xec/0x190 [brcmfmac]
[ 47.176016] brcmf_proto_bcdc_txcomplete+0x1c0/0x210 [brcmfmac]
[ 47.182056] brcmf_sdio_sendfromq+0x8dc/0x1e80 [brcmfmac]
[ 47.187568] brcmf_sdio_dpc+0xb48/0x2108 [brcmfmac]
[ 47.192529] brcmf_sdio_dataworker+0xc8/0x238 [brcmfmac]
[ 47.197859] process_one_work+0x7fc/0x1a80
[ 47.201965] worker_thread+0x31c/0xc40
[ 47.205726] kthread+0x2d8/0x370
[ 47.208967] ret_from_fork+0x10/0x18
[ 47.212546]
[ 47.214051] The buggy address belongs to the object at ffffff803f588280
[ 47.214051] which belongs to the cache skbuff_head_cache of size 208
[ 47.227086] The buggy address is located 104 bytes inside of
[ 47.227086] 208-byte region [ffffff803f588280, ffffff803f588350)
[ 47.238814] The buggy address belongs to the page:
[ 47.243618] page:ffffffff00dd6200 refcount:1 mapcou
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
xsk: Fix xsk_diag use-after-free error during socket cleanup
Fix a use-after-free error that is possible if the xsk_diag interface
is used after the socket has been unbound from the device. This can
happen either due to the socket being closed or the device
disappearing. In the early days of AF_XDP, the way we tested that a
socket was not bound to a device was to simply check if the netdevice
pointer in the xsk socket structure was NULL. Later, a better system
was introduced by having an explicit state variable in the xsk socket
struct. For example, the state of a socket that is on the way to being
closed and has been unbound from the device is XSK_UNBOUND.
The commit in the Fixes tag below deleted the old way of signalling
that a socket is unbound, setting dev to NULL. This in the belief that
all code using the old way had been exterminated. That was
unfortunately not true as the xsk diagnostics code was still using the
old way and thus does not work as intended when a socket is going
down. Fix this by introducing a test against the state variable. If
the socket is in the state XSK_UNBOUND, simply abort the diagnostic's
netlink operation. |
| Wasmi is a WebAssembly interpreter focused on constrained and embedded systems. In versions 0.41.0, 0.41.1, 0.42.0 through 0.47.1, 0.50.0 through 0.51.2 and 1.0.0, Wasmi's linear memory implementation leads to a Use After Free vulnerability, triggered by a WebAssembly module under certain memory growth conditions. This issue potentially leads to memory corruption, information disclosure, or code execution. This issue is fixed in versions 0.41.2, 0.47.1, 0.51.3 and 1.0.1. To workaround this issue, consider limiting the maximum linear memory sizes where feasible. |
| In the Linux kernel, the following vulnerability has been resolved:
skmsg: pass gfp argument to alloc_sk_msg()
syzbot found that alloc_sk_msg() could be called from a
non sleepable context. sk_psock_verdict_recv() uses
rcu_read_lock() protection.
We need the callers to pass a gfp_t argument to avoid issues.
syzbot report was:
BUG: sleeping function called from invalid context at include/linux/sched/mm.h:274
in_atomic(): 0, irqs_disabled(): 0, non_block: 0, pid: 3613, name: syz-executor414
preempt_count: 0, expected: 0
RCU nest depth: 1, expected: 0
INFO: lockdep is turned off.
CPU: 0 PID: 3613 Comm: syz-executor414 Not tainted 6.0.0-syzkaller-09589-g55be6084c8e0 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/22/2022
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x1e3/0x2cb lib/dump_stack.c:106
__might_resched+0x538/0x6a0 kernel/sched/core.c:9877
might_alloc include/linux/sched/mm.h:274 [inline]
slab_pre_alloc_hook mm/slab.h:700 [inline]
slab_alloc_node mm/slub.c:3162 [inline]
slab_alloc mm/slub.c:3256 [inline]
kmem_cache_alloc_trace+0x59/0x310 mm/slub.c:3287
kmalloc include/linux/slab.h:600 [inline]
kzalloc include/linux/slab.h:733 [inline]
alloc_sk_msg net/core/skmsg.c:507 [inline]
sk_psock_skb_ingress_self+0x5c/0x330 net/core/skmsg.c:600
sk_psock_verdict_apply+0x395/0x440 net/core/skmsg.c:1014
sk_psock_verdict_recv+0x34d/0x560 net/core/skmsg.c:1201
tcp_read_skb+0x4a1/0x790 net/ipv4/tcp.c:1770
tcp_rcv_established+0x129d/0x1a10 net/ipv4/tcp_input.c:5971
tcp_v4_do_rcv+0x479/0xac0 net/ipv4/tcp_ipv4.c:1681
sk_backlog_rcv include/net/sock.h:1109 [inline]
__release_sock+0x1d8/0x4c0 net/core/sock.c:2906
release_sock+0x5d/0x1c0 net/core/sock.c:3462
tcp_sendmsg+0x36/0x40 net/ipv4/tcp.c:1483
sock_sendmsg_nosec net/socket.c:714 [inline]
sock_sendmsg net/socket.c:734 [inline]
__sys_sendto+0x46d/0x5f0 net/socket.c:2117
__do_sys_sendto net/socket.c:2129 [inline]
__se_sys_sendto net/socket.c:2125 [inline]
__x64_sys_sendto+0xda/0xf0 net/socket.c:2125
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x2b/0x70 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Wait for io return on terminate rport
System crash due to use after free.
Current code allows terminate_rport_io to exit before making
sure all IOs has returned. For FCP-2 device, IO's can hang
on in HW because driver has not tear down the session in FW at
first sign of cable pull. When dev_loss_tmo timer pops,
terminate_rport_io is called and upper layer is about to
free various resources. Terminate_rport_io trigger qla to do
the final cleanup, but the cleanup might not be fast enough where it
leave qla still holding on to the same resource.
Wait for IO's to return to upper layer before resources are freed. |
| In the Linux kernel, the following vulnerability has been resolved:
fs: fix UAF/GPF bug in nilfs_mdt_destroy
In alloc_inode, inode_init_always() could return -ENOMEM if
security_inode_alloc() fails, which causes inode->i_private
uninitialized. Then nilfs_is_metadata_file_inode() returns
true and nilfs_free_inode() wrongly calls nilfs_mdt_destroy(),
which frees the uninitialized inode->i_private
and leads to crashes(e.g., UAF/GPF).
Fix this by moving security_inode_alloc just prior to
this_cpu_inc(nr_inodes) |
| Xbox Wireless Adapter Remote Code Execution Vulnerability |
| Windows Win32k Elevation of Privilege Vulnerability |
| Windows Layer-2 Bridge Network Driver Remote Code Execution Vulnerability |