| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Rack is a modular Ruby web server interface. Prior to versions 2.2.20, 3.1.18, and 3.2.3, a possible information disclosure vulnerability existed in `Rack::Sendfile` when running behind a proxy that supports `x-sendfile` headers (such as Nginx). Specially crafted headers could cause `Rack::Sendfile` to miscommunicate with the proxy and trigger unintended internal requests, potentially bypassing proxy-level access restrictions. When `Rack::Sendfile` received untrusted `x-sendfile-type` or `x-accel-mapping` headers from a client, it would interpret them as proxy configuration directives. This could cause the middleware to send a "redirect" response to the proxy, prompting it to reissue a new internal request that was not subject to the proxy's access controls. An attacker could exploit this by setting a crafted `x-sendfile-type: x-accel-redirect` header, setting a crafted `x-accel-mapping` header, and requesting a path that qualifies for proxy-based acceleration. Attackers could bypass proxy-enforced restrictions and access internal endpoints intended to be protected (such as administrative pages). The vulnerability did not allow arbitrary file reads but could expose sensitive application routes. This issue only affected systems meeting all of the following conditions: The application used `Rack::Sendfile` with a proxy that supports `x-accel-redirect` (e.g., Nginx); the proxy did **not** always set or remove the `x-sendfile-type` and `x-accel-mapping` headers; and the application exposed an endpoint that returned a body responding to `.to_path`. Users should upgrade to Rack versions 2.2.20, 3.1.18, or 3.2.3, which require explicit configuration to enable `x-accel-redirect`. Alternatively, configure the proxy to always set or strip the header, or in Rails applications, disable sendfile completely. |
| In the Linux kernel, the following vulnerability has been resolved:
cpufreq/amd-pstate: Fix cpufreq_policy ref counting
amd_pstate_update_limits() takes a cpufreq_policy reference but doesn't
decrement the refcount in one of the exit paths, fix that. |
| Server-Side Request Forgery (SSRF) vulnerability in Salesforce Tableau Server on Windows, Linux (EPS Server modules) allows Resource Location Spoofing. This issue affects Tableau Server: before 2025.1.3, before 2024.2.12, before 2023.3.19. |
| Mattermost Server versions 10.5.x <= 10.5.9 utilizing the Agents plugin fail to reject empty request bodies which allows users to trick users into clicking malicious links via post actions |
| HCL Unica Centralized Offer Management is vulnerable to a potential Server-Side Request Forgery (SSRF). An attacker can exploit improper input validation by submitting maliciously crafted input to a target application running on a server. |
| Microsoft Exchange Server Remote Code Execution Vulnerability |
| Server-Side Request Forgery (SSRF) vulnerability in Salesforce Tableau Server allows Authentication Bypass.This issue affects Tableau Server: from 2023.3 through 2023.3.5. |
| A remote code execution vulnerability exists when the Microsoft .NET Framework fails to validate input properly, aka '.NET Framework Remote Code Execution Injection Vulnerability'. |
| Skype for Business Elevation of Privilege Vulnerability |
| A vulnerability in Cisco Smart Licensing Utility (CSLU) could allow an unauthenticated, remote attacker to log into an affected system by using a static administrative credential.
This vulnerability is due to an undocumented static user credential for an administrative account. An attacker could exploit this vulnerability by using the static credentials to login to the affected system. A successful exploit could allow the attacker to login to the affected system with administrative rights over the CSLU application API. |
| A vulnerability has been found in Tomofun Furbo 360 and Furbo Mini. Impacted is an unknown function of the file TF_FQDN.json of the component GATT Interface URL Handler. Such manipulation leads to server-side request forgery. The attack may be performed from remote. Attacks of this nature are highly complex. The exploitability is considered difficult. The firmware versions determined to be affected are Furbo 360 up to FB0035_FW_036 and Furbo Mini up to MC0020_FW_074. The vendor was contacted early about this disclosure but did not respond in any way. |
| The Real Cookie Banner: GDPR & ePrivacy Cookie Consent plugin for WordPress is vulnerable to Server-Side Request Forgery in all versions up to, and including, 5.2.4. This is due to insufficient validation on the user-supplied URL in the '/scanner/scan-without-login' REST API endpoint. This makes it possible for authenticated attackers, with administrator-level access and above, to make web requests to arbitrary locations originating from the web application and can be used to query and modify information from internal services via the `url` parameter. |
| The Popup builder with Gamification, Multi-Step Popups, Page-Level Targeting, and WooCommerce Triggers plugin for WordPress is vulnerable to Server-Side Request Forgery in all versions up to, and including, 2.1.4. This is due to insufficient validation on the URLs supplied via the URL parameter. This makes it possible for unauthenticated attackers to make web requests to arbitrary locations originating from the web application and can be used to query and modify information from internal services, as well as conduct network reconnaissance. The vulnerability was partially patched in version 2.1.4. |
| Apache Log4j2 2.0-beta9 through 2.15.0 (excluding security releases 2.12.2, 2.12.3, and 2.3.1) JNDI features used in configuration, log messages, and parameters do not protect against attacker controlled LDAP and other JNDI related endpoints. An attacker who can control log messages or log message parameters can execute arbitrary code loaded from LDAP servers when message lookup substitution is enabled. From log4j 2.15.0, this behavior has been disabled by default. From version 2.16.0 (along with 2.12.2, 2.12.3, and 2.3.1), this functionality has been completely removed. Note that this vulnerability is specific to log4j-core and does not affect log4net, log4cxx, or other Apache Logging Services projects. |
| Forced OGNL evaluation, when evaluated on raw user input in tag attributes, may lead to remote code execution. Affected software : Apache Struts 2.0.0 - Struts 2.5.25. |
| A crafted request uri-path can cause mod_proxy to forward the request to an origin server choosen by the remote user. This issue affects Apache HTTP Server 2.4.48 and earlier. |
| It was found that the fix to address CVE-2021-44228 in Apache Log4j 2.15.0 was incomplete in certain non-default configurations. This could allows attackers with control over Thread Context Map (MDC) input data when the logging configuration uses a non-default Pattern Layout with either a Context Lookup (for example, $${ctx:loginId}) or a Thread Context Map pattern (%X, %mdc, or %MDC) to craft malicious input data using a JNDI Lookup pattern resulting in an information leak and remote code execution in some environments and local code execution in all environments. Log4j 2.16.0 (Java 8) and 2.12.2 (Java 7) fix this issue by removing support for message lookup patterns and disabling JNDI functionality by default. |
| Vulnerability in the Oracle Configurator product of Oracle E-Business Suite (component: Runtime UI). Supported versions that are affected are 12.2.3-12.2.14. Easily exploitable vulnerability allows unauthenticated attacker with network access via HTTP to compromise Oracle Configurator. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Oracle Configurator accessible data. CVSS 3.1 Base Score 7.5 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N). |
| On BIG-IP versions 16.0.x before 16.0.1.1, 15.1.x before 15.1.2.1, 14.1.x before 14.1.4, 13.1.x before 13.1.3.6, and 12.1.x before 12.1.5.3 amd BIG-IQ 7.1.0.x before 7.1.0.3 and 7.0.0.x before 7.0.0.2, the iControl REST interface has an unauthenticated remote command execution vulnerability. Note: Software versions which have reached End of Software Development (EoSD) are not evaluated. |
| FastGPT is an AI Agent building platform. Prior to version 4.11.1, in the workflow file reading node, the network link is not security-verified, posing a risk of SSRF attacks. This issue has been patched in version 4.11.1. |