Search Results (7629 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2024-36013 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-05-04 6.8 Medium
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: L2CAP: Fix slab-use-after-free in l2cap_connect() Extend a critical section to prevent chan from early freeing. Also make the l2cap_connect() return type void. Nothing is using the returned value but it is ugly to return a potentially freed pointer. Making it void will help with backports because earlier kernels did use the return value. Now the compile will break for kernels where this patch is not a complete fix. Call stack summary: [use] l2cap_bredr_sig_cmd l2cap_connect ┌ mutex_lock(&conn->chan_lock); │ chan = pchan->ops->new_connection(pchan); <- alloc chan │ __l2cap_chan_add(conn, chan); │ l2cap_chan_hold(chan); │ list_add(&chan->list, &conn->chan_l); ... (1) └ mutex_unlock(&conn->chan_lock); chan->conf_state ... (4) <- use after free [free] l2cap_conn_del ┌ mutex_lock(&conn->chan_lock); │ foreach chan in conn->chan_l: ... (2) │ l2cap_chan_put(chan); │ l2cap_chan_destroy │ kfree(chan) ... (3) <- chan freed └ mutex_unlock(&conn->chan_lock); ================================================================== BUG: KASAN: slab-use-after-free in instrument_atomic_read include/linux/instrumented.h:68 [inline] BUG: KASAN: slab-use-after-free in _test_bit include/asm-generic/bitops/instrumented-non-atomic.h:141 [inline] BUG: KASAN: slab-use-after-free in l2cap_connect+0xa67/0x11a0 net/bluetooth/l2cap_core.c:4260 Read of size 8 at addr ffff88810bf040a0 by task kworker/u3:1/311
CVE-2024-36012 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-05-04 7.8 High
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: msft: fix slab-use-after-free in msft_do_close() Tying the msft->data lifetime to hdev by freeing it in hci_release_dev() to fix the following case: [use] msft_do_close() msft = hdev->msft_data; if (!msft) ...(1) <- passed. return; mutex_lock(&msft->filter_lock); ...(4) <- used after freed. [free] msft_unregister() msft = hdev->msft_data; hdev->msft_data = NULL; ...(2) kfree(msft); ...(3) <- msft is freed. ================================================================== BUG: KASAN: slab-use-after-free in __mutex_lock_common kernel/locking/mutex.c:587 [inline] BUG: KASAN: slab-use-after-free in __mutex_lock+0x8f/0xc30 kernel/locking/mutex.c:752 Read of size 8 at addr ffff888106cbbca8 by task kworker/u5:2/309
CVE-2024-35986 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: phy: ti: tusb1210: Resolve charger-det crash if charger psy is unregistered The power_supply frame-work is not really designed for there to be long living in kernel references to power_supply devices. Specifically unregistering a power_supply while some other code has a reference to it triggers a WARN in power_supply_unregister(): WARN_ON(atomic_dec_return(&psy->use_cnt)); Folllowed by the power_supply still getting removed and the backing data freed anyway, leaving the tusb1210 charger-detect code with a dangling reference, resulting in a crash the next time tusb1210_get_online() is called. Fix this by only holding the reference in tusb1210_get_online() freeing it at the end of the function. Note this still leaves a theoretical race window, but it avoids the issue when manually rmmod-ing the charger chip driver during development.
CVE-2024-35979 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-05-04 7.8 High
In the Linux kernel, the following vulnerability has been resolved: raid1: fix use-after-free for original bio in raid1_write_request() r1_bio->bios[] is used to record new bios that will be issued to underlying disks, however, in raid1_write_request(), r1_bio->bios[] will set to the original bio temporarily. Meanwhile, if blocked rdev is set, free_r1bio() will be called causing that all r1_bio->bios[] to be freed: raid1_write_request() r1_bio = alloc_r1bio(mddev, bio); -> r1_bio->bios[] is NULL for (i = 0; i < disks; i++) -> for each rdev in conf // first rdev is normal r1_bio->bios[0] = bio; -> set to original bio // second rdev is blocked if (test_bit(Blocked, &rdev->flags)) break if (blocked_rdev) free_r1bio() put_all_bios() bio_put(r1_bio->bios[0]) -> original bio is freed Test scripts: mdadm -CR /dev/md0 -l1 -n4 /dev/sd[abcd] --assume-clean fio -filename=/dev/md0 -ioengine=libaio -rw=write -bs=4k -numjobs=1 \ -iodepth=128 -name=test -direct=1 echo blocked > /sys/block/md0/md/rd2/state Test result: BUG bio-264 (Not tainted): Object already free ----------------------------------------------------------------------------- Allocated in mempool_alloc_slab+0x24/0x50 age=1 cpu=1 pid=869 kmem_cache_alloc+0x324/0x480 mempool_alloc_slab+0x24/0x50 mempool_alloc+0x6e/0x220 bio_alloc_bioset+0x1af/0x4d0 blkdev_direct_IO+0x164/0x8a0 blkdev_write_iter+0x309/0x440 aio_write+0x139/0x2f0 io_submit_one+0x5ca/0xb70 __do_sys_io_submit+0x86/0x270 __x64_sys_io_submit+0x22/0x30 do_syscall_64+0xb1/0x210 entry_SYSCALL_64_after_hwframe+0x6c/0x74 Freed in mempool_free_slab+0x1f/0x30 age=1 cpu=1 pid=869 kmem_cache_free+0x28c/0x550 mempool_free_slab+0x1f/0x30 mempool_free+0x40/0x100 bio_free+0x59/0x80 bio_put+0xf0/0x220 free_r1bio+0x74/0xb0 raid1_make_request+0xadf/0x1150 md_handle_request+0xc7/0x3b0 md_submit_bio+0x76/0x130 __submit_bio+0xd8/0x1d0 submit_bio_noacct_nocheck+0x1eb/0x5c0 submit_bio_noacct+0x169/0xd40 submit_bio+0xee/0x1d0 blkdev_direct_IO+0x322/0x8a0 blkdev_write_iter+0x309/0x440 aio_write+0x139/0x2f0 Since that bios for underlying disks are not allocated yet, fix this problem by using mempool_free() directly to free the r1_bio.
CVE-2024-35921 1 Linux 1 Linux Kernel 2025-05-04 7.8 High
In the Linux kernel, the following vulnerability has been resolved: media: mediatek: vcodec: Fix oops when HEVC init fails The stateless HEVC decoder saves the instance pointer in the context regardless if the initialization worked or not. This caused a use after free, when the pointer is freed in case of a failure in the deinit function. Only store the instance pointer when the initialization was successful, to solve this issue. Hardware name: Acer Tomato (rev3 - 4) board (DT) pstate: 80400009 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : vcodec_vpu_send_msg+0x4c/0x190 [mtk_vcodec_dec] lr : vcodec_send_ap_ipi+0x78/0x170 [mtk_vcodec_dec] sp : ffff80008750bc20 x29: ffff80008750bc20 x28: ffff1299f6d70000 x27: 0000000000000000 x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000 x23: ffff80008750bc98 x22: 000000000000a003 x21: ffffd45c4cfae000 x20: 0000000000000010 x19: ffff1299fd668310 x18: 000000000000001a x17: 000000040044ffff x16: ffffd45cb15dc648 x15: 0000000000000000 x14: ffff1299c08da1c0 x13: ffffd45cb1f87a10 x12: ffffd45cb2f5fe80 x11: 0000000000000001 x10: 0000000000001b30 x9 : ffffd45c4d12b488 x8 : 1fffe25339380d81 x7 : 0000000000000001 x6 : ffff1299c9c06c00 x5 : 0000000000000132 x4 : 0000000000000000 x3 : 0000000000000000 x2 : 0000000000000010 x1 : ffff80008750bc98 x0 : 0000000000000000 Call trace: vcodec_vpu_send_msg+0x4c/0x190 [mtk_vcodec_dec] vcodec_send_ap_ipi+0x78/0x170 [mtk_vcodec_dec] vpu_dec_deinit+0x1c/0x30 [mtk_vcodec_dec] vdec_hevc_slice_deinit+0x30/0x98 [mtk_vcodec_dec] vdec_if_deinit+0x38/0x68 [mtk_vcodec_dec] mtk_vcodec_dec_release+0x20/0x40 [mtk_vcodec_dec] fops_vcodec_release+0x64/0x118 [mtk_vcodec_dec] v4l2_release+0x7c/0x100 __fput+0x80/0x2d8 __fput_sync+0x58/0x70 __arm64_sys_close+0x40/0x90 invoke_syscall+0x50/0x128 el0_svc_common.constprop.0+0x48/0xf0 do_el0_svc+0x24/0x38 el0_svc+0x38/0xd8 el0t_64_sync_handler+0xc0/0xc8 el0t_64_sync+0x1a8/0x1b0 Code: d503201f f9401660 b900127f b900227f (f9400400)
CVE-2024-35887 1 Linux 1 Linux Kernel 2025-05-04 7.8 High
In the Linux kernel, the following vulnerability has been resolved: ax25: fix use-after-free bugs caused by ax25_ds_del_timer When the ax25 device is detaching, the ax25_dev_device_down() calls ax25_ds_del_timer() to cleanup the slave_timer. When the timer handler is running, the ax25_ds_del_timer() that calls del_timer() in it will return directly. As a result, the use-after-free bugs could happen, one of the scenarios is shown below: (Thread 1) | (Thread 2) | ax25_ds_timeout() ax25_dev_device_down() | ax25_ds_del_timer() | del_timer() | ax25_dev_put() //FREE | | ax25_dev-> //USE In order to mitigate bugs, when the device is detaching, use timer_shutdown_sync() to stop the timer.
CVE-2024-35856 1 Linux 1 Linux Kernel 2025-05-04 7.8 High
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: btusb: mediatek: Fix double free of skb in coredump hci_devcd_append() would free the skb on error so the caller don't have to free it again otherwise it would cause the double free of skb. Reported-by : Dan Carpenter <dan.carpenter@linaro.org>
CVE-2024-35855 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2025-05-04 7.8 High
In the Linux kernel, the following vulnerability has been resolved: mlxsw: spectrum_acl_tcam: Fix possible use-after-free during activity update The rule activity update delayed work periodically traverses the list of configured rules and queries their activity from the device. As part of this task it accesses the entry pointed by 'ventry->entry', but this entry can be changed concurrently by the rehash delayed work, leading to a use-after-free [1]. Fix by closing the race and perform the activity query under the 'vregion->lock' mutex. [1] BUG: KASAN: slab-use-after-free in mlxsw_sp_acl_tcam_flower_rule_activity_get+0x121/0x140 Read of size 8 at addr ffff8881054ed808 by task kworker/0:18/181 CPU: 0 PID: 181 Comm: kworker/0:18 Not tainted 6.9.0-rc2-custom-00781-gd5ab772d32f7 #2 Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019 Workqueue: mlxsw_core mlxsw_sp_acl_rule_activity_update_work Call Trace: <TASK> dump_stack_lvl+0xc6/0x120 print_report+0xce/0x670 kasan_report+0xd7/0x110 mlxsw_sp_acl_tcam_flower_rule_activity_get+0x121/0x140 mlxsw_sp_acl_rule_activity_update_work+0x219/0x400 process_one_work+0x8eb/0x19b0 worker_thread+0x6c9/0xf70 kthread+0x2c9/0x3b0 ret_from_fork+0x4d/0x80 ret_from_fork_asm+0x1a/0x30 </TASK> Allocated by task 1039: kasan_save_stack+0x33/0x60 kasan_save_track+0x14/0x30 __kasan_kmalloc+0x8f/0xa0 __kmalloc+0x19c/0x360 mlxsw_sp_acl_tcam_entry_create+0x7b/0x1f0 mlxsw_sp_acl_tcam_vchunk_migrate_all+0x30d/0xb50 mlxsw_sp_acl_tcam_vregion_rehash_work+0x157/0x1300 process_one_work+0x8eb/0x19b0 worker_thread+0x6c9/0xf70 kthread+0x2c9/0x3b0 ret_from_fork+0x4d/0x80 ret_from_fork_asm+0x1a/0x30 Freed by task 1039: kasan_save_stack+0x33/0x60 kasan_save_track+0x14/0x30 kasan_save_free_info+0x3b/0x60 poison_slab_object+0x102/0x170 __kasan_slab_free+0x14/0x30 kfree+0xc1/0x290 mlxsw_sp_acl_tcam_vchunk_migrate_all+0x3d7/0xb50 mlxsw_sp_acl_tcam_vregion_rehash_work+0x157/0x1300 process_one_work+0x8eb/0x19b0 worker_thread+0x6c9/0xf70 kthread+0x2c9/0x3b0 ret_from_fork+0x4d/0x80 ret_from_fork_asm+0x1a/0x30
CVE-2024-35854 3 Debian, Linux, Redhat 4 Debian Linux, Linux Kernel, Enterprise Linux and 1 more 2025-05-04 8.8 High
In the Linux kernel, the following vulnerability has been resolved: mlxsw: spectrum_acl_tcam: Fix possible use-after-free during rehash The rehash delayed work migrates filters from one region to another according to the number of available credits. The migrated from region is destroyed at the end of the work if the number of credits is non-negative as the assumption is that this is indicative of migration being complete. This assumption is incorrect as a non-negative number of credits can also be the result of a failed migration. The destruction of a region that still has filters referencing it can result in a use-after-free [1]. Fix by not destroying the region if migration failed. [1] BUG: KASAN: slab-use-after-free in mlxsw_sp_acl_ctcam_region_entry_remove+0x21d/0x230 Read of size 8 at addr ffff8881735319e8 by task kworker/0:31/3858 CPU: 0 PID: 3858 Comm: kworker/0:31 Tainted: G W 6.9.0-rc2-custom-00782-gf2275c2157d8 #5 Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019 Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work Call Trace: <TASK> dump_stack_lvl+0xc6/0x120 print_report+0xce/0x670 kasan_report+0xd7/0x110 mlxsw_sp_acl_ctcam_region_entry_remove+0x21d/0x230 mlxsw_sp_acl_ctcam_entry_del+0x2e/0x70 mlxsw_sp_acl_atcam_entry_del+0x81/0x210 mlxsw_sp_acl_tcam_vchunk_migrate_all+0x3cd/0xb50 mlxsw_sp_acl_tcam_vregion_rehash_work+0x157/0x1300 process_one_work+0x8eb/0x19b0 worker_thread+0x6c9/0xf70 kthread+0x2c9/0x3b0 ret_from_fork+0x4d/0x80 ret_from_fork_asm+0x1a/0x30 </TASK> Allocated by task 174: kasan_save_stack+0x33/0x60 kasan_save_track+0x14/0x30 __kasan_kmalloc+0x8f/0xa0 __kmalloc+0x19c/0x360 mlxsw_sp_acl_tcam_region_create+0xdf/0x9c0 mlxsw_sp_acl_tcam_vregion_rehash_work+0x954/0x1300 process_one_work+0x8eb/0x19b0 worker_thread+0x6c9/0xf70 kthread+0x2c9/0x3b0 ret_from_fork+0x4d/0x80 ret_from_fork_asm+0x1a/0x30 Freed by task 7: kasan_save_stack+0x33/0x60 kasan_save_track+0x14/0x30 kasan_save_free_info+0x3b/0x60 poison_slab_object+0x102/0x170 __kasan_slab_free+0x14/0x30 kfree+0xc1/0x290 mlxsw_sp_acl_tcam_region_destroy+0x272/0x310 mlxsw_sp_acl_tcam_vregion_rehash_work+0x731/0x1300 process_one_work+0x8eb/0x19b0 worker_thread+0x6c9/0xf70 kthread+0x2c9/0x3b0 ret_from_fork+0x4d/0x80 ret_from_fork_asm+0x1a/0x30
CVE-2024-35847 3 Debian, Linux, Redhat 4 Debian Linux, Linux Kernel, Enterprise Linux and 1 more 2025-05-04 7.8 High
In the Linux kernel, the following vulnerability has been resolved: irqchip/gic-v3-its: Prevent double free on error The error handling path in its_vpe_irq_domain_alloc() causes a double free when its_vpe_init() fails after successfully allocating at least one interrupt. This happens because its_vpe_irq_domain_free() frees the interrupts along with the area bitmap and the vprop_page and its_vpe_irq_domain_alloc() subsequently frees the area bitmap and the vprop_page again. Fix this by unconditionally invoking its_vpe_irq_domain_free() which handles all cases correctly and by removing the bitmap/vprop_page freeing from its_vpe_irq_domain_alloc(). [ tglx: Massaged change log ]
CVE-2024-35835 3 Debian, Linux, Redhat 4 Debian Linux, Linux Kernel, Enterprise Linux and 1 more 2025-05-04 5.3 Medium
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: fix a double-free in arfs_create_groups When `in` allocated by kvzalloc fails, arfs_create_groups will free ft->g and return an error. However, arfs_create_table, the only caller of arfs_create_groups, will hold this error and call to mlx5e_destroy_flow_table, in which the ft->g will be freed again.
CVE-2024-35811 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: brcmfmac: Fix use-after-free bug in brcmf_cfg80211_detach This is the candidate patch of CVE-2023-47233 : https://nvd.nist.gov/vuln/detail/CVE-2023-47233 In brcm80211 driver,it starts with the following invoking chain to start init a timeout worker: ->brcmf_usb_probe ->brcmf_usb_probe_cb ->brcmf_attach ->brcmf_bus_started ->brcmf_cfg80211_attach ->wl_init_priv ->brcmf_init_escan ->INIT_WORK(&cfg->escan_timeout_work, brcmf_cfg80211_escan_timeout_worker); If we disconnect the USB by hotplug, it will call brcmf_usb_disconnect to make cleanup. The invoking chain is : brcmf_usb_disconnect ->brcmf_usb_disconnect_cb ->brcmf_detach ->brcmf_cfg80211_detach ->kfree(cfg); While the timeout woker may still be running. This will cause a use-after-free bug on cfg in brcmf_cfg80211_escan_timeout_worker. Fix it by deleting the timer and canceling the worker in brcmf_cfg80211_detach. [arend.vanspriel@broadcom.com: keep timer delete as is and cancel work just before free]
CVE-2024-27433 1 Linux 1 Linux Kernel 2025-05-04 7.8 High
In the Linux kernel, the following vulnerability has been resolved: clk: mediatek: mt7622-apmixedsys: Fix an error handling path in clk_mt8135_apmixed_probe() 'clk_data' is allocated with mtk_devm_alloc_clk_data(). So calling mtk_free_clk_data() explicitly in the remove function would lead to a double-free. Remove the redundant call.
CVE-2024-27395 3 Debian, Linux, Redhat 4 Debian Linux, Linux Kernel, Enterprise Linux and 1 more 2025-05-04 7.8 High
In the Linux kernel, the following vulnerability has been resolved: net: openvswitch: Fix Use-After-Free in ovs_ct_exit Since kfree_rcu, which is called in the hlist_for_each_entry_rcu traversal of ovs_ct_limit_exit, is not part of the RCU read critical section, it is possible that the RCU grace period will pass during the traversal and the key will be free. To prevent this, it should be changed to hlist_for_each_entry_safe.
CVE-2024-27394 1 Linux 1 Linux Kernel 2025-05-04 7.4 High
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix Use-After-Free in tcp_ao_connect_init Since call_rcu, which is called in the hlist_for_each_entry_rcu traversal of tcp_ao_connect_init, is not part of the RCU read critical section, it is possible that the RCU grace period will pass during the traversal and the key will be free. To prevent this, it should be changed to hlist_for_each_entry_safe.
CVE-2024-27392 1 Linux 1 Linux Kernel 2025-05-04 7.8 High
In the Linux kernel, the following vulnerability has been resolved: nvme: host: fix double-free of struct nvme_id_ns in ns_update_nuse() When nvme_identify_ns() fails, it frees the pointer to the struct nvme_id_ns before it returns. However, ns_update_nuse() calls kfree() for the pointer even when nvme_identify_ns() fails. This results in KASAN double-free, which was observed with blktests nvme/045 with proposed patches [1] on the kernel v6.8-rc7. Fix the double-free by skipping kfree() when nvme_identify_ns() fails.
CVE-2024-27061 1 Linux 1 Linux Kernel 2025-05-04 7.8 High
In the Linux kernel, the following vulnerability has been resolved: crypto: sun8i-ce - Fix use after free in unprepare sun8i_ce_cipher_unprepare should be called before crypto_finalize_skcipher_request, because client callbacks may immediately free memory, that isn't needed anymore. But it will be used by unprepare after free. Before removing prepare/unprepare callbacks it was handled by crypto engine in crypto_finalize_request. Usually that results in a pointer dereference problem during a in crypto selftest. Unable to handle kernel NULL pointer dereference at virtual address 0000000000000030 Mem abort info: ESR = 0x0000000096000004 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x04: level 0 translation fault Data abort info: ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000 CM = 0, WnR = 0, TnD = 0, TagAccess = 0 GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 user pgtable: 4k pages, 48-bit VAs, pgdp=000000004716d000 [0000000000000030] pgd=0000000000000000, p4d=0000000000000000 Internal error: Oops: 0000000096000004 [#1] SMP This problem is detected by KASAN as well. ================================================================== BUG: KASAN: slab-use-after-free in sun8i_ce_cipher_do_one+0x6e8/0xf80 [sun8i_ce] Read of size 8 at addr ffff00000dcdc040 by task 1c15000.crypto-/373 Hardware name: Pine64 PinePhone (1.2) (DT) Call trace: dump_backtrace+0x9c/0x128 show_stack+0x20/0x38 dump_stack_lvl+0x48/0x60 print_report+0xf8/0x5d8 kasan_report+0x90/0xd0 __asan_load8+0x9c/0xc0 sun8i_ce_cipher_do_one+0x6e8/0xf80 [sun8i_ce] crypto_pump_work+0x354/0x620 [crypto_engine] kthread_worker_fn+0x244/0x498 kthread+0x168/0x178 ret_from_fork+0x10/0x20 Allocated by task 379: kasan_save_stack+0x3c/0x68 kasan_set_track+0x2c/0x40 kasan_save_alloc_info+0x24/0x38 __kasan_kmalloc+0xd4/0xd8 __kmalloc+0x74/0x1d0 alg_test_skcipher+0x90/0x1f0 alg_test+0x24c/0x830 cryptomgr_test+0x38/0x60 kthread+0x168/0x178 ret_from_fork+0x10/0x20 Freed by task 379: kasan_save_stack+0x3c/0x68 kasan_set_track+0x2c/0x40 kasan_save_free_info+0x38/0x60 __kasan_slab_free+0x100/0x170 slab_free_freelist_hook+0xd4/0x1e8 __kmem_cache_free+0x15c/0x290 kfree+0x74/0x100 kfree_sensitive+0x80/0xb0 alg_test_skcipher+0x12c/0x1f0 alg_test+0x24c/0x830 cryptomgr_test+0x38/0x60 kthread+0x168/0x178 ret_from_fork+0x10/0x20 The buggy address belongs to the object at ffff00000dcdc000 which belongs to the cache kmalloc-256 of size 256 The buggy address is located 64 bytes inside of freed 256-byte region [ffff00000dcdc000, ffff00000dcdc100)
CVE-2024-27052 3 Debian, Linux, Redhat 4 Debian Linux, Linux Kernel, Enterprise Linux and 1 more 2025-05-04 7.4 High
In the Linux kernel, the following vulnerability has been resolved: wifi: rtl8xxxu: add cancel_work_sync() for c2hcmd_work The workqueue might still be running, when the driver is stopped. To avoid a use-after-free, call cancel_work_sync() in rtl8xxxu_stop().
CVE-2024-27049 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-05-04 7.8 High
In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: mt7925e: fix use-after-free in free_irq() From commit a304e1b82808 ("[PATCH] Debug shared irqs"), there is a test to make sure the shared irq handler should be able to handle the unexpected event after deregistration. For this case, let's apply MT76_REMOVED flag to indicate the device was removed and do not run into the resource access anymore.
CVE-2024-27043 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-05-04 7.8 High
In the Linux kernel, the following vulnerability has been resolved: media: edia: dvbdev: fix a use-after-free In dvb_register_device, *pdvbdev is set equal to dvbdev, which is freed in several error-handling paths. However, *pdvbdev is not set to NULL after dvbdev's deallocation, causing use-after-frees in many places, for example, in the following call chain: budget_register |-> dvb_dmxdev_init |-> dvb_register_device |-> dvb_dmxdev_release |-> dvb_unregister_device |-> dvb_remove_device |-> dvb_device_put |-> kref_put When calling dvb_unregister_device, dmxdev->dvbdev (i.e. *pdvbdev in dvb_register_device) could point to memory that had been freed in dvb_register_device. Thereafter, this pointer is transferred to kref_put and triggering a use-after-free.