| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
mm/gup: reject FOLL_SPLIT_PMD with hugetlb VMAs
Patch series "mm: fixes for device-exclusive entries (hmm)", v2.
Discussing the PageTail() call in make_device_exclusive_range() with
Willy, I recently discovered [1] that device-exclusive handling does not
properly work with THP, making the hmm-tests selftests fail if THPs are
enabled on the system.
Looking into more details, I found that hugetlb is not properly fenced,
and I realized that something that was bugging me for longer -- how
device-exclusive entries interact with mapcounts -- completely breaks
migration/swapout/split/hwpoison handling of these folios while they have
device-exclusive PTEs.
The program below can be used to allocate 1 GiB worth of pages and making
them device-exclusive on a kernel with CONFIG_TEST_HMM.
Once they are device-exclusive, these folios cannot get swapped out
(proc$pid/smaps_rollup will always indicate 1 GiB RSS no matter how much
one forces memory reclaim), and when having a memory block onlined to
ZONE_MOVABLE, trying to offline it will loop forever and complain about
failed migration of a page that should be movable.
# echo offline > /sys/devices/system/memory/memory136/state
# echo online_movable > /sys/devices/system/memory/memory136/state
# ./hmm-swap &
... wait until everything is device-exclusive
# echo offline > /sys/devices/system/memory/memory136/state
[ 285.193431][T14882] page: refcount:2 mapcount:0 mapping:0000000000000000
index:0x7f20671f7 pfn:0x442b6a
[ 285.196618][T14882] memcg:ffff888179298000
[ 285.198085][T14882] anon flags: 0x5fff0000002091c(referenced|uptodate|
dirty|active|owner_2|swapbacked|node=1|zone=3|lastcpupid=0x7ff)
[ 285.201734][T14882] raw: ...
[ 285.204464][T14882] raw: ...
[ 285.207196][T14882] page dumped because: migration failure
[ 285.209072][T14882] page_owner tracks the page as allocated
[ 285.210915][T14882] page last allocated via order 0, migratetype
Movable, gfp_mask 0x140dca(GFP_HIGHUSER_MOVABLE|__GFP_COMP|__GFP_ZERO),
id 14926, tgid 14926 (hmm-swap), ts 254506295376, free_ts 227402023774
[ 285.216765][T14882] post_alloc_hook+0x197/0x1b0
[ 285.218874][T14882] get_page_from_freelist+0x76e/0x3280
[ 285.220864][T14882] __alloc_frozen_pages_noprof+0x38e/0x2740
[ 285.223302][T14882] alloc_pages_mpol+0x1fc/0x540
[ 285.225130][T14882] folio_alloc_mpol_noprof+0x36/0x340
[ 285.227222][T14882] vma_alloc_folio_noprof+0xee/0x1a0
[ 285.229074][T14882] __handle_mm_fault+0x2b38/0x56a0
[ 285.230822][T14882] handle_mm_fault+0x368/0x9f0
...
This series fixes all issues I found so far. There is no easy way to fix
without a bigger rework/cleanup. I have a bunch of cleanups on top (some
previous sent, some the result of the discussion in v1) that I will send
out separately once this landed and I get to it.
I wish we could just use some special present PROT_NONE PTEs instead of
these (non-present, non-none) fake-swap entries; but that just results in
the same problem we keep having (lack of spare PTE bits), and staring at
other similar fake-swap entries, that ship has sailed.
With this series, make_device_exclusive() doesn't actually belong into
mm/rmap.c anymore, but I'll leave moving that for another day.
I only tested this series with the hmm-tests selftests due to lack of HW,
so I'd appreciate some testing, especially if the interaction between two
GPUs wanting a device-exclusive entry works as expected.
<program>
#include <stdio.h>
#include <fcntl.h>
#include <stdint.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/ioctl.h>
#include <linux/types.h>
#include <linux/ioctl.h>
#define HMM_DMIRROR_EXCLUSIVE _IOWR('H', 0x05, struct hmm_dmirror_cmd)
struct hmm_dmirror_cmd {
__u64 addr;
__u64 ptr;
__u64 npages;
__u64 cpages;
__u64 faults;
};
const size_t size = 1 * 1024 * 1024 * 1024ul;
const size_t chunk_size = 2 * 1024 * 1024ul;
int m
---truncated--- |
| The communication protocol implemented in Ghost Robotics Vision 60 v0.27.2 could allow an attacker to send commands to the robot from an external attack station, impersonating the control station (tablet) and gaining unauthorised full control of the robot. The absence of encryption and authentication mechanisms in the communication protocol allows an attacker to capture legitimate traffic between the robot and the controller, replicate it, and send any valid command to the robot from any attacking computer or device. The communication protocol used in this interface is based on MAVLink, a widely documented protocol, which increases the likelihood of attack. There are two methods for connecting to the robot remotely: Wi-Fi and 4G/LTE. |
| In the Linux kernel, the following vulnerability has been resolved:
Revert "openvswitch: switch to per-action label counting in conntrack"
Currently, ovs_ct_set_labels() is only called for confirmed conntrack
entries (ct) within ovs_ct_commit(). However, if the conntrack entry
does not have the labels_ext extension, attempting to allocate it in
ovs_ct_get_conn_labels() for a confirmed entry triggers a warning in
nf_ct_ext_add():
WARN_ON(nf_ct_is_confirmed(ct));
This happens when the conntrack entry is created externally before OVS
increments net->ct.labels_used. The issue has become more likely since
commit fcb1aa5163b1 ("openvswitch: switch to per-action label counting
in conntrack"), which changed to use per-action label counting and
increment net->ct.labels_used when a flow with ct action is added.
Since there’s no straightforward way to fully resolve this issue at the
moment, this reverts the commit to avoid breaking existing use cases. |
| Ghost Robotics Vision 60 v0.27.2 includes, among its physical interfaces, three RJ45 connectors and a USB Type-C port. The vulnerability is due to the lack of authentication mechanisms when establishing connections through these ports. Specifically, with regard to network connectivity, the robot's internal router automatically assigns IP addresses to any device physically connected to it. An attacker could connect a WiFi access point under their control to gain access to the robot's network without needing the credentials for the deployed network. Once inside, the attacker can monitor all its data, as the robot runs on ROS 2 without authentication by default. |
| A security flaw has been discovered in elunez eladmin up to 2.7. Affected by this issue is some unknown functionality of the file /auth/info. The manipulation results in information disclosure. The attack can be launched remotely. The exploit has been released to the public and may be exploited. |
| In the Linux kernel, the following vulnerability has been resolved:
eth: bnxt: return fail if interface is down in bnxt_queue_mem_alloc()
The bnxt_queue_mem_alloc() is called to allocate new queue memory when
a queue is restarted.
It internally accesses rx buffer descriptor corresponding to the index.
The rx buffer descriptor is allocated and set when the interface is up
and it's freed when the interface is down.
So, if queue is restarted if interface is down, kernel panic occurs.
Splat looks like:
BUG: unable to handle page fault for address: 000000000000b240
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 3 UID: 0 PID: 1563 Comm: ncdevmem2 Not tainted 6.14.0-rc2+ #9 844ddba6e7c459cafd0bf4db9a3198e
Hardware name: ASUS System Product Name/PRIME Z690-P D4, BIOS 0603 11/01/2021
RIP: 0010:bnxt_queue_mem_alloc+0x3f/0x4e0 [bnxt_en]
Code: 41 54 4d 89 c4 4d 69 c0 c0 05 00 00 55 48 89 f5 53 48 89 fb 4c 8d b5 40 05 00 00 48 83 ec 15
RSP: 0018:ffff9dcc83fef9e8 EFLAGS: 00010202
RAX: ffffffffc0457720 RBX: ffff934ed8d40000 RCX: 0000000000000000
RDX: 000000000000001f RSI: ffff934ea508f800 RDI: ffff934ea508f808
RBP: ffff934ea508f800 R08: 000000000000b240 R09: ffff934e84f4b000
R10: ffff9dcc83fefa30 R11: ffff934e84f4b000 R12: 000000000000001f
R13: ffff934ed8d40ac0 R14: ffff934ea508fd40 R15: ffff934e84f4b000
FS: 00007fa73888c740(0000) GS:ffff93559f780000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000000000000b240 CR3: 0000000145a2e000 CR4: 00000000007506f0
PKRU: 55555554
Call Trace:
<TASK>
? __die+0x20/0x70
? page_fault_oops+0x15a/0x460
? exc_page_fault+0x6e/0x180
? asm_exc_page_fault+0x22/0x30
? __pfx_bnxt_queue_mem_alloc+0x10/0x10 [bnxt_en 7f85e76f4d724ba07471d7e39d9e773aea6597b7]
? bnxt_queue_mem_alloc+0x3f/0x4e0 [bnxt_en 7f85e76f4d724ba07471d7e39d9e773aea6597b7]
netdev_rx_queue_restart+0xc5/0x240
net_devmem_bind_dmabuf_to_queue+0xf8/0x200
netdev_nl_bind_rx_doit+0x3a7/0x450
genl_family_rcv_msg_doit+0xd9/0x130
genl_rcv_msg+0x184/0x2b0
? __pfx_netdev_nl_bind_rx_doit+0x10/0x10
? __pfx_genl_rcv_msg+0x10/0x10
netlink_rcv_skb+0x54/0x100
genl_rcv+0x24/0x40
... |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915: Grab intel_display from the encoder to avoid potential oopsies
Grab the intel_display from 'encoder' rather than 'state'
in the encoder hooks to avoid the massive footgun that is
intel_sanitize_encoder(), which passes NULL as the 'state'
argument to encoder .disable() and .post_disable().
TODO: figure out how to actually fix intel_sanitize_encoder()... |
| In the Linux kernel, the following vulnerability has been resolved:
mctp i3c: handle NULL header address
daddr can be NULL if there is no neighbour table entry present,
in that case the tx packet should be dropped.
saddr will usually be set by MCTP core, but check for NULL in case a
packet is transmitted by a different protocol. |
| In the Linux kernel, the following vulnerability has been resolved:
acpi: typec: ucsi: Introduce a ->poll_cci method
For the ACPI backend of UCSI the UCSI "registers" are just a memory copy
of the register values in an opregion. The ACPI implementation in the
BIOS ensures that the opregion contents are synced to the embedded
controller and it ensures that the registers (in particular CCI) are
synced back to the opregion on notifications. While there is an ACPI call
that syncs the actual registers to the opregion there is rarely a need to
do this and on some ACPI implementations it actually breaks in various
interesting ways.
The only reason to force a sync from the embedded controller is to poll
CCI while notifications are disabled. Only the ucsi core knows if this
is the case and guessing based on the current command is suboptimal, i.e.
leading to the following spurious assertion splat:
WARNING: CPU: 3 PID: 76 at drivers/usb/typec/ucsi/ucsi.c:1388 ucsi_reset_ppm+0x1b4/0x1c0 [typec_ucsi]
CPU: 3 UID: 0 PID: 76 Comm: kworker/3:0 Not tainted 6.12.11-200.fc41.x86_64 #1
Hardware name: LENOVO 21D0/LNVNB161216, BIOS J6CN45WW 03/17/2023
Workqueue: events_long ucsi_init_work [typec_ucsi]
RIP: 0010:ucsi_reset_ppm+0x1b4/0x1c0 [typec_ucsi]
Call Trace:
<TASK>
ucsi_init_work+0x3c/0xac0 [typec_ucsi]
process_one_work+0x179/0x330
worker_thread+0x252/0x390
kthread+0xd2/0x100
ret_from_fork+0x34/0x50
ret_from_fork_asm+0x1a/0x30
</TASK>
Thus introduce a ->poll_cci() method that works like ->read_cci() with an
additional forced sync and document that this should be used when polling
with notifications disabled. For all other backends that presumably don't
have this issue use the same implementation for both methods. |
| In the Linux kernel, the following vulnerability has been resolved:
net: enetc: VFs do not support HWTSTAMP_TX_ONESTEP_SYNC
Actually ENETC VFs do not support HWTSTAMP_TX_ONESTEP_SYNC because only
ENETC PF can access PMa_SINGLE_STEP registers. And there will be a crash
if VFs are used to test one-step timestamp, the crash log as follows.
[ 129.110909] Unable to handle kernel paging request at virtual address 00000000000080c0
[ 129.287769] Call trace:
[ 129.290219] enetc_port_mac_wr+0x30/0xec (P)
[ 129.294504] enetc_start_xmit+0xda4/0xe74
[ 129.298525] enetc_xmit+0x70/0xec
[ 129.301848] dev_hard_start_xmit+0x98/0x118 |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nft_payload: incorrect arithmetics when fetching VLAN header bits
If the offset + length goes over the ethernet + vlan header, then the
length is adjusted to copy the bytes that are within the boundaries of
the vlan_ethhdr scratchpad area. The remaining bytes beyond ethernet +
vlan header are copied directly from the skbuff data area.
Fix incorrect arithmetic operator: subtract, not add, the size of the
vlan header in case of double-tagged packets to adjust the length
accordingly to address CVE-2023-0179. |
| Improper validation of some components used by the rollback mechanism in Trend Micro Apex One and Trend Micro Apex One as a Service clients could allow a Apex One server administrator to instruct affected clients to download an unverified rollback package, which could lead to remote code execution. Please note: an attacker must first obtain Apex One server administration console access in order to exploit this vulnerability. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: prevent connection release during oplock break notification
ksmbd_work could be freed when after connection release.
Increment r_count of ksmbd_conn to indicate that requests
are not finished yet and to not release the connection. |
| In the Linux kernel, the following vulnerability has been resolved:
mm: memory-failure: update ttu flag inside unmap_poisoned_folio
Patch series "mm: memory_failure: unmap poisoned folio during migrate
properly", v3.
Fix two bugs during folio migration if the folio is poisoned.
This patch (of 3):
Commit 6da6b1d4a7df ("mm/hwpoison: convert TTU_IGNORE_HWPOISON to
TTU_HWPOISON") introduce TTU_HWPOISON to replace TTU_IGNORE_HWPOISON in
order to stop send SIGBUS signal when accessing an error page after a
memory error on a clean folio. However during page migration, anon folio
must be set with TTU_HWPOISON during unmap_*(). For pagecache we need
some policy just like the one in hwpoison_user_mappings to set this flag.
So move this policy from hwpoison_user_mappings to unmap_poisoned_folio to
handle this warning properly.
Warning will be produced during unamp poison folio with the following log:
------------[ cut here ]------------
WARNING: CPU: 1 PID: 365 at mm/rmap.c:1847 try_to_unmap_one+0x8fc/0xd3c
Modules linked in:
CPU: 1 UID: 0 PID: 365 Comm: bash Tainted: G W 6.13.0-rc1-00018-gacdb4bbda7ab #42
Tainted: [W]=WARN
Hardware name: QEMU QEMU Virtual Machine, BIOS 0.0.0 02/06/2015
pstate: 20400005 (nzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : try_to_unmap_one+0x8fc/0xd3c
lr : try_to_unmap_one+0x3dc/0xd3c
Call trace:
try_to_unmap_one+0x8fc/0xd3c (P)
try_to_unmap_one+0x3dc/0xd3c (L)
rmap_walk_anon+0xdc/0x1f8
rmap_walk+0x3c/0x58
try_to_unmap+0x88/0x90
unmap_poisoned_folio+0x30/0xa8
do_migrate_range+0x4a0/0x568
offline_pages+0x5a4/0x670
memory_block_action+0x17c/0x374
memory_subsys_offline+0x3c/0x78
device_offline+0xa4/0xd0
state_store+0x8c/0xf0
dev_attr_store+0x18/0x2c
sysfs_kf_write+0x44/0x54
kernfs_fop_write_iter+0x118/0x1a8
vfs_write+0x3a8/0x4bc
ksys_write+0x6c/0xf8
__arm64_sys_write+0x1c/0x28
invoke_syscall+0x44/0x100
el0_svc_common.constprop.0+0x40/0xe0
do_el0_svc+0x1c/0x28
el0_svc+0x30/0xd0
el0t_64_sync_handler+0xc8/0xcc
el0t_64_sync+0x198/0x19c
---[ end trace 0000000000000000 ]---
[mawupeng1@huawei.com: unmap_poisoned_folio(): remove shadowed local `mapping', per Miaohe] |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: tegra - do not transfer req when tegra init fails
The tegra_cmac_init or tegra_sha_init function may return an error when
memory is exhausted. It should not transfer the request when they return
an error. |
| In the Linux kernel, the following vulnerability has been resolved:
misc: misc_minor_alloc to use ida for all dynamic/misc dynamic minors
misc_minor_alloc was allocating id using ida for minor only in case of
MISC_DYNAMIC_MINOR but misc_minor_free was always freeing ids
using ida_free causing a mismatch and following warn:
> > WARNING: CPU: 0 PID: 159 at lib/idr.c:525 ida_free+0x3e0/0x41f
> > ida_free called for id=127 which is not allocated.
> > <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
...
> > [<60941eb4>] ida_free+0x3e0/0x41f
> > [<605ac993>] misc_minor_free+0x3e/0xbc
> > [<605acb82>] misc_deregister+0x171/0x1b3
misc_minor_alloc is changed to allocate id from ida for all minors
falling in the range of dynamic/ misc dynamic minors |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Fix peer devlink set for SF representor devlink port
The cited patch change register devlink flow, and neglect to reflect
the changes for peer devlink set logic. Peer devlink set is
triggering a call trace if done after devl_register.[1]
Hence, align peer devlink set logic with register devlink flow.
[1]
WARNING: CPU: 4 PID: 3394 at net/devlink/core.c:155 devlink_rel_nested_in_add+0x177/0x180
CPU: 4 PID: 3394 Comm: kworker/u40:1 Not tainted 6.9.0-rc4_for_linust_min_debug_2024_04_16_14_08 #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
Workqueue: mlx5_vhca_event0 mlx5_vhca_state_work_handler [mlx5_core]
RIP: 0010:devlink_rel_nested_in_add+0x177/0x180
Call Trace:
<TASK>
? __warn+0x78/0x120
? devlink_rel_nested_in_add+0x177/0x180
? report_bug+0x16d/0x180
? handle_bug+0x3c/0x60
? exc_invalid_op+0x14/0x70
? asm_exc_invalid_op+0x16/0x20
? devlink_port_init+0x30/0x30
? devlink_port_type_clear+0x50/0x50
? devlink_rel_nested_in_add+0x177/0x180
? devlink_rel_nested_in_add+0xdd/0x180
mlx5_sf_mdev_event+0x74/0xb0 [mlx5_core]
notifier_call_chain+0x35/0xb0
blocking_notifier_call_chain+0x3d/0x60
mlx5_blocking_notifier_call_chain+0x22/0x30 [mlx5_core]
mlx5_sf_dev_probe+0x185/0x3e0 [mlx5_core]
auxiliary_bus_probe+0x38/0x80
? driver_sysfs_add+0x51/0x80
really_probe+0xc5/0x3a0
? driver_probe_device+0x90/0x90
__driver_probe_device+0x80/0x160
driver_probe_device+0x1e/0x90
__device_attach_driver+0x7d/0x100
bus_for_each_drv+0x80/0xd0
__device_attach+0xbc/0x1f0
bus_probe_device+0x86/0xa0
device_add+0x64f/0x860
__auxiliary_device_add+0x3b/0xa0
mlx5_sf_dev_add+0x139/0x330 [mlx5_core]
mlx5_sf_dev_state_change_handler+0x1e4/0x250 [mlx5_core]
notifier_call_chain+0x35/0xb0
blocking_notifier_call_chain+0x3d/0x60
mlx5_vhca_state_work_handler+0x151/0x200 [mlx5_core]
process_one_work+0x13f/0x2e0
worker_thread+0x2bd/0x3c0
? rescuer_thread+0x410/0x410
kthread+0xc4/0xf0
? kthread_complete_and_exit+0x20/0x20
ret_from_fork+0x2d/0x50
? kthread_complete_and_exit+0x20/0x20
ret_from_fork_asm+0x11/0x20
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
media: nuvoton: Fix an error check in npcm_video_ece_init()
When function of_find_device_by_node() fails, it returns NULL instead of
an error code. So the corresponding error check logic should be modified
to check whether the return value is NULL and set the error code to be
returned as -ENODEV. |
| In the Linux kernel, the following vulnerability has been resolved:
net: stmmac: move the EST lock to struct stmmac_priv
Reinitialize the whole EST structure would also reset the mutex
lock which is embedded in the EST structure, and then trigger
the following warning. To address this, move the lock to struct
stmmac_priv. We also need to reacquire the mutex lock when doing
this initialization.
DEBUG_LOCKS_WARN_ON(lock->magic != lock)
WARNING: CPU: 3 PID: 505 at kernel/locking/mutex.c:587 __mutex_lock+0xd84/0x1068
Modules linked in:
CPU: 3 PID: 505 Comm: tc Not tainted 6.9.0-rc6-00053-g0106679839f7-dirty #29
Hardware name: NXP i.MX8MPlus EVK board (DT)
pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : __mutex_lock+0xd84/0x1068
lr : __mutex_lock+0xd84/0x1068
sp : ffffffc0864e3570
x29: ffffffc0864e3570 x28: ffffffc0817bdc78 x27: 0000000000000003
x26: ffffff80c54f1808 x25: ffffff80c9164080 x24: ffffffc080d723ac
x23: 0000000000000000 x22: 0000000000000002 x21: 0000000000000000
x20: 0000000000000000 x19: ffffffc083bc3000 x18: ffffffffffffffff
x17: ffffffc08117b080 x16: 0000000000000002 x15: ffffff80d2d40000
x14: 00000000000002da x13: ffffff80d2d404b8 x12: ffffffc082b5a5c8
x11: ffffffc082bca680 x10: ffffffc082bb2640 x9 : ffffffc082bb2698
x8 : 0000000000017fe8 x7 : c0000000ffffefff x6 : 0000000000000001
x5 : ffffff8178fe0d48 x4 : 0000000000000000 x3 : 0000000000000027
x2 : ffffff8178fe0d50 x1 : 0000000000000000 x0 : 0000000000000000
Call trace:
__mutex_lock+0xd84/0x1068
mutex_lock_nested+0x28/0x34
tc_setup_taprio+0x118/0x68c
stmmac_setup_tc+0x50/0xf0
taprio_change+0x868/0xc9c |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: don't flush non-uploaded STAs
If STA state is pre-moved to AUTHORIZED (such as in IBSS
scenarios) and insertion fails, the station is freed.
In this case, the driver never knew about the station,
so trying to flush it is unexpected and may crash.
Check if the sta was uploaded to the driver before and
fix this. |