| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe/nvm: Fix double-free on aux add failure
After a successful auxiliary_device_init(), aux_dev->dev.release
(xe_nvm_release_dev()) is responsible for the kfree(nvm). When
there is failure with auxiliary_device_add(), driver will call
auxiliary_device_uninit(), which call put_device(). So that the
.release callback will be triggered to free the memory associated
with the auxiliary_device.
Move the kfree(nvm) into the auxiliary_device_init() failure path
and remove the err goto path to fix below error.
"
[ 13.232905] ==================================================================
[ 13.232911] BUG: KASAN: double-free in xe_nvm_init+0x751/0xf10 [xe]
[ 13.233112] Free of addr ffff888120635000 by task systemd-udevd/273
[ 13.233120] CPU: 8 UID: 0 PID: 273 Comm: systemd-udevd Not tainted 6.19.0-rc2-lgci-xe-kernel+ #225 PREEMPT(voluntary)
...
[ 13.233125] Call Trace:
[ 13.233126] <TASK>
[ 13.233127] dump_stack_lvl+0x7f/0xc0
[ 13.233132] print_report+0xce/0x610
[ 13.233136] ? kasan_complete_mode_report_info+0x5d/0x1e0
[ 13.233139] ? xe_nvm_init+0x751/0xf10 [xe]
...
"
v2: drop err goto path. (Alexander)
(cherry picked from commit a3187c0c2bbd947ffff97f90d077ac88f9c2a215) |
| In the Linux kernel, the following vulnerability has been resolved:
rocker: fix memory leak in rocker_world_port_post_fini()
In rocker_world_port_pre_init(), rocker_port->wpriv is allocated with
kzalloc(wops->port_priv_size, GFP_KERNEL). However, in
rocker_world_port_post_fini(), the memory is only freed when
wops->port_post_fini callback is set:
if (!wops->port_post_fini)
return;
wops->port_post_fini(rocker_port);
kfree(rocker_port->wpriv);
Since rocker_ofdpa_ops does not implement port_post_fini callback
(it is NULL), the wpriv memory allocated for each port is never freed
when ports are removed. This leads to a memory leak of
sizeof(struct ofdpa_port) bytes per port on every device removal.
Fix this by always calling kfree(rocker_port->wpriv) regardless of
whether the port_post_fini callback exists. |
| A security vulnerability has been detected in Wavlink WL-NU516U1 up to 130/260. This affects the function sub_406194 of the file /cgi-bin/adm.cgi. Such manipulation of the argument firmware_url leads to stack-based buffer overflow. The attack can be launched remotely. The exploit has been disclosed publicly and may be used. The vendor was contacted early about this disclosure but did not respond in any way. |
| A security flaw has been discovered in Intelbras VIP 3260 Z IA 2.840.00IB005.0.T. Affected by this vulnerability is an unknown functionality of the file /OutsideCmd. The manipulation results in weak password recovery. It is possible to launch the attack remotely. Attacks of this nature are highly complex. The exploitation appears to be difficult. It is recommended to upgrade the affected component. |
| A flaw has been found in GeekAI up to 4.2.4. The affected element is the function Download of the file api/handler/net_handler.go. This manipulation of the argument url causes server-side request forgery. Remote exploitation of the attack is possible. The exploit has been published and may be used. The project was informed of the problem early through an issue report but has not responded yet. |
| A vulnerability was identified in vichan-devel vichan up to 5.1.5. This vulnerability affects unknown code of the file inc/mod/pages.php of the component Password Change Handler. The manipulation of the argument Password leads to unverified password change. The attack can be initiated remotely. The vendor was contacted early about this disclosure but did not respond in any way. |
| A weakness has been identified in Total VPN 0.5.29.0 on Windows. Affected by this vulnerability is an unknown functionality of the file C:\Program Files\Total VPN\win-service.exe. Executing a manipulation can lead to unquoted search path. It is possible to launch the attack on the local host. This attack is characterized by high complexity. The exploitation appears to be difficult. The vendor was contacted early about this disclosure but did not respond in any way. |
| A vulnerability was determined in opencc JFlow up to 20260129. This affects the function Imp_Done of the file src/main/java/bp/wf/httphandler/WF_Admin_AttrFlow.java of the component Workflow Engine. This manipulation of the argument File causes xml external entity reference. The attack may be initiated remotely. The exploit has been publicly disclosed and may be utilized. The project was informed of the problem early through an issue report but has not responded yet. |
| A flaw has been found in Tosei Self-service Washing Machine 4.02. Impacted is an unknown function of the file /cgi-bin/tosei_datasend.php. Executing a manipulation of the argument adr_txt_1 can lead to command injection. It is possible to launch the attack remotely. The exploit has been published and may be used. The vendor was contacted early about this disclosure but did not respond in any way. |
| A vulnerability was detected in lintsinghua DeepAudit up to 3.0.3. This issue affects some unknown processing of the file backend/app/api/v1/endpoints/embedding_config.py of the component IP Address Handler. Performing a manipulation results in server-side request forgery. It is possible to initiate the attack remotely. Upgrading to version 3.0.4 and 3.1.0 is capable of addressing this issue. The patch is named da853fdd8cbe9d42053b45d83f25708ba29b8b27. It is suggested to upgrade the affected component. |
| The Zarinpal Gateway for WooCommerce plugin for WordPress is vulnerable to Improper Access Control to Payment Status Update in all versions up to and including 5.0.16. This is due to the payment callback handler 'Return_from_ZarinPal_Gateway' failing to validate that the authority token provided in the callback URL belongs to the specific order being marked as paid. This makes it possible for unauthenticated attackers to potentially mark orders as paid without proper payment by reusing a valid authority token from a different transaction of the same amount. |
| A vulnerability was identified in Unidocs ezPDF DRM Reader and ezPDF Reader 2.0/3.0.0.4 on 32-bit. This affects an unknown part in the library SHFOLDER.dll. Such manipulation leads to uncontrolled search path. The attack needs to be performed locally. Attacks of this nature are highly complex. It is indicated that the exploitability is difficult. The exploit is publicly available and might be used. The vendor was contacted early about this disclosure but did not respond in any way. |
| Glory RBG-100 recycler systems using the ISPK-08 software component contain hard-coded operating system credentials that allow remote authentication to the underlying Linux system. Multiple local user accounts, including accounts with administrative privileges, were found to have fixed, embedded passwords. An attacker with network access to exposed services such as SSH may authenticate using these credentials and gain unauthorized access to the system. Successful exploitation allows remote access with elevated privileges and may result in full system compromise. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: Fix PTP NULL pointer dereference during VSI rebuild
Fix race condition where PTP periodic work runs while VSI is being
rebuilt, accessing NULL vsi->rx_rings.
The sequence was:
1. ice_ptp_prepare_for_reset() cancels PTP work
2. ice_ptp_rebuild() immediately queues PTP work
3. VSI rebuild happens AFTER ice_ptp_rebuild()
4. PTP work runs and accesses NULL vsi->rx_rings
Fix: Keep PTP work cancelled during rebuild, only queue it after
VSI rebuild completes in ice_rebuild().
Added ice_ptp_queue_work() helper function to encapsulate the logic
for queuing PTP work, ensuring it's only queued when PTP is supported
and the state is ICE_PTP_READY.
Error log:
[ 121.392544] ice 0000:60:00.1: PTP reset successful
[ 121.392692] BUG: kernel NULL pointer dereference, address: 0000000000000000
[ 121.392712] #PF: supervisor read access in kernel mode
[ 121.392720] #PF: error_code(0x0000) - not-present page
[ 121.392727] PGD 0
[ 121.392734] Oops: Oops: 0000 [#1] SMP NOPTI
[ 121.392746] CPU: 8 UID: 0 PID: 1005 Comm: ice-ptp-0000:60 Tainted: G S 6.19.0-rc6+ #4 PREEMPT(voluntary)
[ 121.392761] Tainted: [S]=CPU_OUT_OF_SPEC
[ 121.392773] RIP: 0010:ice_ptp_update_cached_phctime+0xbf/0x150 [ice]
[ 121.393042] Call Trace:
[ 121.393047] <TASK>
[ 121.393055] ice_ptp_periodic_work+0x69/0x180 [ice]
[ 121.393202] kthread_worker_fn+0xa2/0x260
[ 121.393216] ? __pfx_ice_ptp_periodic_work+0x10/0x10 [ice]
[ 121.393359] ? __pfx_kthread_worker_fn+0x10/0x10
[ 121.393371] kthread+0x10d/0x230
[ 121.393382] ? __pfx_kthread+0x10/0x10
[ 121.393393] ret_from_fork+0x273/0x2b0
[ 121.393407] ? __pfx_kthread+0x10/0x10
[ 121.393417] ret_from_fork_asm+0x1a/0x30
[ 121.393432] </TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
spi: tegra210-quad: Protect curr_xfer check in IRQ handler
Now that all other accesses to curr_xfer are done under the lock,
protect the curr_xfer NULL check in tegra_qspi_isr_thread() with the
spinlock. Without this protection, the following race can occur:
CPU0 (ISR thread) CPU1 (timeout path)
---------------- -------------------
if (!tqspi->curr_xfer)
// sees non-NULL
spin_lock()
tqspi->curr_xfer = NULL
spin_unlock()
handle_*_xfer()
spin_lock()
t = tqspi->curr_xfer // NULL!
... t->len ... // NULL dereference!
With this patch, all curr_xfer accesses are now properly synchronized.
Although all accesses to curr_xfer are done under the lock, in
tegra_qspi_isr_thread() it checks for NULL, releases the lock and
reacquires it later in handle_cpu_based_xfer()/handle_dma_based_xfer().
There is a potential for an update in between, which could cause a NULL
pointer dereference.
To handle this, add a NULL check inside the handlers after acquiring
the lock. This ensures that if the timeout path has already cleared
curr_xfer, the handler will safely return without dereferencing the
NULL pointer. |
| In the Linux kernel, the following vulnerability has been resolved:
dpaa2-switch: prevent ZERO_SIZE_PTR dereference when num_ifs is zero
The driver allocates arrays for ports, FDBs, and filter blocks using
kcalloc() with ethsw->sw_attr.num_ifs as the element count. When the
device reports zero interfaces (either due to hardware configuration
or firmware issues), kcalloc(0, ...) returns ZERO_SIZE_PTR (0x10)
instead of NULL.
Later in dpaa2_switch_probe(), the NAPI initialization unconditionally
accesses ethsw->ports[0]->netdev, which attempts to dereference
ZERO_SIZE_PTR (address 0x10), resulting in a kernel panic.
Add a check to ensure num_ifs is greater than zero after retrieving
device attributes. This prevents the zero-sized allocations and
subsequent invalid pointer dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
procfs: avoid fetching build ID while holding VMA lock
Fix PROCMAP_QUERY to fetch optional build ID only after dropping mmap_lock
or per-VMA lock, whichever was used to lock VMA under question, to avoid
deadlock reported by syzbot:
-> #1 (&mm->mmap_lock){++++}-{4:4}:
__might_fault+0xed/0x170
_copy_to_iter+0x118/0x1720
copy_page_to_iter+0x12d/0x1e0
filemap_read+0x720/0x10a0
blkdev_read_iter+0x2b5/0x4e0
vfs_read+0x7f4/0xae0
ksys_read+0x12a/0x250
do_syscall_64+0xcb/0xf80
entry_SYSCALL_64_after_hwframe+0x77/0x7f
-> #0 (&sb->s_type->i_mutex_key#8){++++}-{4:4}:
__lock_acquire+0x1509/0x26d0
lock_acquire+0x185/0x340
down_read+0x98/0x490
blkdev_read_iter+0x2a7/0x4e0
__kernel_read+0x39a/0xa90
freader_fetch+0x1d5/0xa80
__build_id_parse.isra.0+0xea/0x6a0
do_procmap_query+0xd75/0x1050
procfs_procmap_ioctl+0x7a/0xb0
__x64_sys_ioctl+0x18e/0x210
do_syscall_64+0xcb/0xf80
entry_SYSCALL_64_after_hwframe+0x77/0x7f
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
rlock(&mm->mmap_lock);
lock(&sb->s_type->i_mutex_key#8);
lock(&mm->mmap_lock);
rlock(&sb->s_type->i_mutex_key#8);
*** DEADLOCK ***
This seems to be exacerbated (as we haven't seen these syzbot reports
before that) by the recent:
777a8560fd29 ("lib/buildid: use __kernel_read() for sleepable context")
To make this safe, we need to grab file refcount while VMA is still locked, but
other than that everything is pretty straightforward. Internal build_id_parse()
API assumes VMA is passed, but it only needs the underlying file reference, so
just add another variant build_id_parse_file() that expects file passed
directly.
[akpm@linux-foundation.org: fix up kerneldoc] |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: target: iscsi: Fix use-after-free in iscsit_dec_session_usage_count()
In iscsit_dec_session_usage_count(), the function calls complete() while
holding the sess->session_usage_lock. Similar to the connection usage count
logic, the waiter signaled by complete() (e.g., in the session release
path) may wake up and free the iscsit_session structure immediately.
This creates a race condition where the current thread may attempt to
execute spin_unlock_bh() on a session structure that has already been
deallocated, resulting in a KASAN slab-use-after-free.
To resolve this, release the session_usage_lock before calling complete()
to ensure all dereferences of the sess pointer are finished before the
waiter is allowed to proceed with deallocation. |
| In the Linux kernel, the following vulnerability has been resolved:
hwmon: (acpi_power_meter) Fix deadlocks related to acpi_power_meter_notify()
The acpi_power_meter driver's .notify() callback function,
acpi_power_meter_notify(), calls hwmon_device_unregister() under a lock
that is also acquired by callbacks in sysfs attributes of the device
being unregistered which is prone to deadlocks between sysfs access and
device removal.
Address this by moving the hwmon device removal in
acpi_power_meter_notify() outside the lock in question, but notice
that doing it alone is not sufficient because two concurrent
METER_NOTIFY_CONFIG notifications may be attempting to remove the
same device at the same time. To prevent that from happening, add a
new lock serializing the execution of the switch () statement in
acpi_power_meter_notify(). For simplicity, it is a static mutex
which should not be a problem from the performance perspective.
The new lock also allows the hwmon_device_register_with_info()
in acpi_power_meter_notify() to be called outside the inner lock
because it prevents the other notifications handled by that function
from manipulating the "resource" object while the hwmon device based
on it is being registered. The sending of ACPI netlink messages from
acpi_power_meter_notify() is serialized by the new lock too which
generally helps to ensure that the order of handling firmware
notifications is the same as the order of sending netlink messages
related to them.
In addition, notice that hwmon_device_register_with_info() may fail
in which case resource->hwmon_dev will become an error pointer,
so add checks to avoid attempting to unregister the hwmon device
pointer to by it in that case to acpi_power_meter_notify() and
acpi_power_meter_remove(). |
| In the Linux kernel, the following vulnerability has been resolved:
cgroup/dmem: fix NULL pointer dereference when setting max
An issue was triggered:
BUG: kernel NULL pointer dereference, address: 0000000000000000
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: Oops: 0000 [#1] SMP NOPTI
CPU: 15 UID: 0 PID: 658 Comm: bash Tainted: 6.19.0-rc6-next-2026012
Tainted: [O]=OOT_MODULE
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996),
RIP: 0010:strcmp+0x10/0x30
RSP: 0018:ffffc900017f7dc0 EFLAGS: 00000246
RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffff888107cd4358
RDX: 0000000019f73907 RSI: ffffffff82cc381a RDI: 0000000000000000
RBP: ffff8881016bef0d R08: 000000006c0e7145 R09: 0000000056c0e714
R10: 0000000000000001 R11: ffff888107cd4358 R12: 0007ffffffffffff
R13: ffff888101399200 R14: ffff888100fcb360 R15: 0007ffffffffffff
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 0000000105c79000 CR4: 00000000000006f0
Call Trace:
<TASK>
dmemcg_limit_write.constprop.0+0x16d/0x390
? __pfx_set_resource_max+0x10/0x10
kernfs_fop_write_iter+0x14e/0x200
vfs_write+0x367/0x510
ksys_write+0x66/0xe0
do_syscall_64+0x6b/0x390
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7f42697e1887
It was trriggered setting max without limitation, the command is like:
"echo test/region0 > dmem.max". To fix this issue, add check whether
options is valid after parsing the region_name. |