| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Heap-based Buffer Overflow, Out-of-bounds Read vulnerability in Avast Antivirus on MacOS when scanning a malformed file may allow Local Execution of Code or Denial-of-Service of the anitvirus engine process.This issue affects Antivirus: from 8.3.70.94 before 8.3.70.98. |
| FeehiCMS version 2.1.1 fails to enforce server-side immutability for parameters that are presented to clients as "read-only." An authenticated attacker can intercept and modify the parameter in transit and the backend accepts the changes. This can lead to unintended username changes. |
| Vulnerability of accessing invalid memory in the component driver module.
Impact: Successful exploitation of this vulnerability will affect availability and confidentiality. |
| Out-of-bounds memory operations in org.lz4:lz4-java 1.8.0 and earlier allow remote attackers to cause denial of service and read adjacent memory via untrusted compressed input. |
| An unauthenticated remote attacker, who beats a race condition, can exploit a flaw in the communication servers of the CODESYS Control runtime system on Linux and QNX to trigger an out-of-bounds read via crafted socket communication, potentially causing a denial of service. |
| Out-of-bounds Read vulnerability in ASR1903、ASR3901 in ASR Lapwing_Linux on Linux (nr_fw modules). This vulnerability is associated with program files Code/nr_fw/DLP/src/NrCgi.C.
This issue affects Lapwing_Linux: before 2025/11/26. |
| In the Linux kernel, the following vulnerability has been resolved:
drm: nv04: Fix out of bounds access
When Output Resource (dcb->or) value is assigned in
fabricate_dcb_output(), there may be out of bounds access to
dac_users array in case dcb->or is zero because ffs(dcb->or) is
used as index there.
The 'or' argument of fabricate_dcb_output() must be interpreted as a
number of bit to set, not value.
Utilize macros from 'enum nouveau_or' in calls instead of hardcoding.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In Ashlar-Vellum Cobalt, Xenon, Argon, Lithium, and Cobalt Share versions prior to 12.6.1204.204, the affected applications lack proper validation of user-supplied data when parsing AR files. This could lead to an out-of-bounds read. An attacker could leverage this vulnerability to execute arbitrary code in the context of the current process. |
| Information disclosure while processing the hash segment in an MBN file. |
| Information disclosure while reading data from an image using specified offset and size parameters. |
| memory corruption while loading a PIL authenticated VM, when authenticated VM image is loaded without maintaining cache coherency. |
| When cache is enabled, some passdb/userdb drivers incorrectly cache all users with same cache key, causing wrong cached information to be used for these users. After cached login, all subsequent logins are for same user. Install fixed version or disable caching either globally or for the impacted passdb/userdb drivers. No publicly available exploits are known. |
| LIBPNG is a reference library for use in applications that read, create, and manipulate PNG (Portable Network Graphics) raster image files. From version 1.6.0 to before 1.6.51, an out-of-bounds read vulnerability exists in png_image_read_composite when processing palette images with PNG_FLAG_OPTIMIZE_ALPHA enabled. The palette compositing code in png_init_read_transformations incorrectly applies background compositing during premultiplication, violating the invariant component ≤ alpha × 257 required by the simplified PNG API. This issue has been patched in version 1.6.51. |
| LIBPNG is a reference library for use in applications that read, create, and manipulate PNG (Portable Network Graphics) raster image files. From version 1.6.0 to before 1.6.51, a heap buffer over-read vulnerability exists in libpng's png_write_image_8bit function when processing 8-bit images through the simplified write API with convert_to_8bit enabled. The vulnerability affects 8-bit grayscale+alpha, RGB/RGBA, and images with incomplete row data. A conditional guard incorrectly allows 8-bit input to enter code expecting 16-bit input, causing reads up to 2 bytes beyond allocated buffer boundaries. This issue has been patched in version 1.6.51. |
| LIBPNG is a reference library for use in applications that read, create, and manipulate PNG (Portable Network Graphics) raster image files. Prior to version 1.6.51, a heap buffer over-read vulnerability exists in libpng's png_do_quantize function when processing PNG files with malformed palette indices. The vulnerability occurs when palette_lookup array bounds are not validated against externally-supplied image data, allowing an attacker to craft a PNG file with out-of-range palette indices that trigger out-of-bounds memory access. This issue has been patched in version 1.6.51. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7996: Fix possible OOB access in mt7996_tx()
Fis possible Out-Of-Boundary access in mt7996_tx routine if link_id is
set to IEEE80211_LINK_UNSPECIFIED |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_devcd_dump: fix out-of-bounds via dev_coredumpv
Currently both dev_coredumpv and skb_put_data in hci_devcd_dump use
hdev->dump.head. However, dev_coredumpv can free the buffer. From
dev_coredumpm_timeout documentation, which is used by dev_coredumpv:
> Creates a new device coredump for the given device. If a previous one hasn't
> been read yet, the new coredump is discarded. The data lifetime is determined
> by the device coredump framework and when it is no longer needed the @free
> function will be called to free the data.
If the data has not been read by the userspace yet, dev_coredumpv will
discard new buffer, freeing hdev->dump.head. This leads to
vmalloc-out-of-bounds error when skb_put_data tries to access
hdev->dump.head.
A crash report from syzbot illustrates this:
==================================================================
BUG: KASAN: vmalloc-out-of-bounds in skb_put_data
include/linux/skbuff.h:2752 [inline]
BUG: KASAN: vmalloc-out-of-bounds in hci_devcd_dump+0x142/0x240
net/bluetooth/coredump.c:258
Read of size 140 at addr ffffc90004ed5000 by task kworker/u9:2/5844
CPU: 1 UID: 0 PID: 5844 Comm: kworker/u9:2 Not tainted
6.14.0-syzkaller-10892-g4e82c87058f4 #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS
Google 02/12/2025
Workqueue: hci0 hci_devcd_timeout
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:408 [inline]
print_report+0xc3/0x670 mm/kasan/report.c:521
kasan_report+0xe0/0x110 mm/kasan/report.c:634
check_region_inline mm/kasan/generic.c:183 [inline]
kasan_check_range+0xef/0x1a0 mm/kasan/generic.c:189
__asan_memcpy+0x23/0x60 mm/kasan/shadow.c:105
skb_put_data include/linux/skbuff.h:2752 [inline]
hci_devcd_dump+0x142/0x240 net/bluetooth/coredump.c:258
hci_devcd_timeout+0xb5/0x2e0 net/bluetooth/coredump.c:413
process_one_work+0x9cc/0x1b70 kernel/workqueue.c:3238
process_scheduled_works kernel/workqueue.c:3319 [inline]
worker_thread+0x6c8/0xf10 kernel/workqueue.c:3400
kthread+0x3c2/0x780 kernel/kthread.c:464
ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:153
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245
</TASK>
The buggy address ffffc90004ed5000 belongs to a vmalloc virtual mapping
Memory state around the buggy address:
ffffc90004ed4f00: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
ffffc90004ed4f80: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
>ffffc90004ed5000: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
^
ffffc90004ed5080: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
ffffc90004ed5100: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
==================================================================
To avoid this issue, reorder dev_coredumpv to be called after
skb_put_data that does not free the data. |
| In the Linux kernel, the following vulnerability has been resolved:
tls: handle data disappearing from under the TLS ULP
TLS expects that it owns the receive queue of the TCP socket.
This cannot be guaranteed in case the reader of the TCP socket
entered before the TLS ULP was installed, or uses some non-standard
read API (eg. zerocopy ones). Replace the WARN_ON() and a buggy
early exit (which leaves anchor pointing to a freed skb) with real
error handling. Wipe the parsing state and tell the reader to retry.
We already reload the anchor every time we (re)acquire the socket lock,
so the only condition we need to avoid is an out of bounds read
(not having enough bytes in the socket for previously parsed record len).
If some data was read from under TLS but there's enough in the queue
we'll reload and decrypt what is most likely not a valid TLS record.
Leading to some undefined behavior from TLS perspective (corrupting
a stream? missing an alert? missing an attack?) but no kernel crash
should take place. |
| In the Linux kernel, the following vulnerability has been resolved:
rv: Use strings in da monitors tracepoints
Using DA monitors tracepoints with KASAN enabled triggers the following
warning:
BUG: KASAN: global-out-of-bounds in do_trace_event_raw_event_event_da_monitor+0xd6/0x1a0
Read of size 32 at addr ffffffffaada8980 by task ...
Call Trace:
<TASK>
[...]
do_trace_event_raw_event_event_da_monitor+0xd6/0x1a0
? __pfx_do_trace_event_raw_event_event_da_monitor+0x10/0x10
? trace_event_sncid+0x83/0x200
trace_event_sncid+0x163/0x200
[...]
The buggy address belongs to the variable:
automaton_snep+0x4e0/0x5e0
This is caused by the tracepoints reading 32 bytes __array instead of
__string from the automata definition. Such strings are literals and
reading 32 bytes ends up in out of bound memory accesses (e.g. the next
automaton's data in this case).
The error is harmless as, while printing the string, we stop at the null
terminator, but it should still be fixed.
Use the __string facilities while defining the tracepoints to avoid
reading out of bound memory. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw89: mcc: prevent shift wrapping in rtw89_core_mlsr_switch()
The "link_id" value comes from the user via debugfs. If it's larger
than BITS_PER_LONG then that would result in shift wrapping and
potentially an out of bounds access later. In fact, we can limit it
to IEEE80211_MLD_MAX_NUM_LINKS (15).
Fortunately, only root can write to debugfs files so the security
impact is minimal. |