| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
bus: mhi: host: pci_generic: Use pci_try_reset_function() to avoid deadlock
There are multiple places from where the recovery work gets scheduled
asynchronously. Also, there are multiple places where the caller waits
synchronously for the recovery to be completed. One such place is during
the PM shutdown() callback.
If the device is not alive during recovery_work, it will try to reset the
device using pci_reset_function(). This function internally will take the
device_lock() first before resetting the device. By this time, if the lock
has already been acquired, then recovery_work will get stalled while
waiting for the lock. And if the lock was already acquired by the caller
which waits for the recovery_work to be completed, it will lead to
deadlock.
This is what happened on the X1E80100 CRD device when the device died
before shutdown() callback. Driver core calls the driver's shutdown()
callback while holding the device_lock() leading to deadlock.
And this deadlock scenario can occur on other paths as well, like during
the PM suspend() callback, where the driver core would hold the
device_lock() before calling driver's suspend() callback. And if the
recovery_work was already started, it could lead to deadlock. This is also
observed on the X1E80100 CRD.
So to fix both issues, use pci_try_reset_function() in recovery_work. This
function first checks for the availability of the device_lock() before
trying to reset the device. If the lock is available, it will acquire it
and reset the device. Otherwise, it will return -EAGAIN. If that happens,
recovery_work will fail with the error message "Recovery failed" as not
much could be done. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix bug on trap in smb2_lock
If lock count is greater than 1, flags could be old value.
It should be checked with flags of smb_lock, not flags.
It will cause bug-on trap from locks_free_lock in error handling
routine. |
| In the Linux kernel, the following vulnerability has been resolved:
hwpoison, memory_hotplug: lock folio before unmap hwpoisoned folio
Commit b15c87263a69 ("hwpoison, memory_hotplug: allow hwpoisoned pages to
be offlined) add page poison checks in do_migrate_range in order to make
offline hwpoisoned page possible by introducing isolate_lru_page and
try_to_unmap for hwpoisoned page. However folio lock must be held before
calling try_to_unmap. Add it to fix this problem.
Warning will be produced if folio is not locked during unmap:
------------[ cut here ]------------
kernel BUG at ./include/linux/swapops.h:400!
Internal error: Oops - BUG: 00000000f2000800 [#1] PREEMPT SMP
Modules linked in:
CPU: 4 UID: 0 PID: 411 Comm: bash Tainted: G W 6.13.0-rc1-00016-g3c434c7ee82a-dirty #41
Tainted: [W]=WARN
Hardware name: QEMU QEMU Virtual Machine, BIOS 0.0.0 02/06/2015
pstate: 40400005 (nZcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : try_to_unmap_one+0xb08/0xd3c
lr : try_to_unmap_one+0x3dc/0xd3c
Call trace:
try_to_unmap_one+0xb08/0xd3c (P)
try_to_unmap_one+0x3dc/0xd3c (L)
rmap_walk_anon+0xdc/0x1f8
rmap_walk+0x3c/0x58
try_to_unmap+0x88/0x90
unmap_poisoned_folio+0x30/0xa8
do_migrate_range+0x4a0/0x568
offline_pages+0x5a4/0x670
memory_block_action+0x17c/0x374
memory_subsys_offline+0x3c/0x78
device_offline+0xa4/0xd0
state_store+0x8c/0xf0
dev_attr_store+0x18/0x2c
sysfs_kf_write+0x44/0x54
kernfs_fop_write_iter+0x118/0x1a8
vfs_write+0x3a8/0x4bc
ksys_write+0x6c/0xf8
__arm64_sys_write+0x1c/0x28
invoke_syscall+0x44/0x100
el0_svc_common.constprop.0+0x40/0xe0
do_el0_svc+0x1c/0x28
el0_svc+0x30/0xd0
el0t_64_sync_handler+0xc8/0xcc
el0t_64_sync+0x198/0x19c
Code: f9407be0 b5fff320 d4210000 17ffff97 (d4210000)
---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
gpio: rcar: Use raw_spinlock to protect register access
Use raw_spinlock in order to fix spurious messages about invalid context
when spinlock debugging is enabled. The lock is only used to serialize
register access.
[ 4.239592] =============================
[ 4.239595] [ BUG: Invalid wait context ]
[ 4.239599] 6.13.0-rc7-arm64-renesas-05496-gd088502a519f #35 Not tainted
[ 4.239603] -----------------------------
[ 4.239606] kworker/u8:5/76 is trying to lock:
[ 4.239609] ffff0000091898a0 (&p->lock){....}-{3:3}, at: gpio_rcar_config_interrupt_input_mode+0x34/0x164
[ 4.239641] other info that might help us debug this:
[ 4.239643] context-{5:5}
[ 4.239646] 5 locks held by kworker/u8:5/76:
[ 4.239651] #0: ffff0000080fb148 ((wq_completion)async){+.+.}-{0:0}, at: process_one_work+0x190/0x62c
[ 4.250180] OF: /soc/sound@ec500000/ports/port@0/endpoint: Read of boolean property 'frame-master' with a value.
[ 4.254094] #1: ffff80008299bd80 ((work_completion)(&entry->work)){+.+.}-{0:0}, at: process_one_work+0x1b8/0x62c
[ 4.254109] #2: ffff00000920c8f8
[ 4.258345] OF: /soc/sound@ec500000/ports/port@1/endpoint: Read of boolean property 'bitclock-master' with a value.
[ 4.264803] (&dev->mutex){....}-{4:4}, at: __device_attach_async_helper+0x3c/0xdc
[ 4.264820] #3: ffff00000a50ca40 (request_class#2){+.+.}-{4:4}, at: __setup_irq+0xa0/0x690
[ 4.264840] #4:
[ 4.268872] OF: /soc/sound@ec500000/ports/port@1/endpoint: Read of boolean property 'frame-master' with a value.
[ 4.273275] ffff00000a50c8c8 (lock_class){....}-{2:2}, at: __setup_irq+0xc4/0x690
[ 4.296130] renesas_sdhi_internal_dmac ee100000.mmc: mmc1 base at 0x00000000ee100000, max clock rate 200 MHz
[ 4.304082] stack backtrace:
[ 4.304086] CPU: 1 UID: 0 PID: 76 Comm: kworker/u8:5 Not tainted 6.13.0-rc7-arm64-renesas-05496-gd088502a519f #35
[ 4.304092] Hardware name: Renesas Salvator-X 2nd version board based on r8a77965 (DT)
[ 4.304097] Workqueue: async async_run_entry_fn
[ 4.304106] Call trace:
[ 4.304110] show_stack+0x14/0x20 (C)
[ 4.304122] dump_stack_lvl+0x6c/0x90
[ 4.304131] dump_stack+0x14/0x1c
[ 4.304138] __lock_acquire+0xdfc/0x1584
[ 4.426274] lock_acquire+0x1c4/0x33c
[ 4.429942] _raw_spin_lock_irqsave+0x5c/0x80
[ 4.434307] gpio_rcar_config_interrupt_input_mode+0x34/0x164
[ 4.440061] gpio_rcar_irq_set_type+0xd4/0xd8
[ 4.444422] __irq_set_trigger+0x5c/0x178
[ 4.448435] __setup_irq+0x2e4/0x690
[ 4.452012] request_threaded_irq+0xc4/0x190
[ 4.456285] devm_request_threaded_irq+0x7c/0xf4
[ 4.459398] ata1: link resume succeeded after 1 retries
[ 4.460902] mmc_gpiod_request_cd_irq+0x68/0xe0
[ 4.470660] mmc_start_host+0x50/0xac
[ 4.474327] mmc_add_host+0x80/0xe4
[ 4.477817] tmio_mmc_host_probe+0x2b0/0x440
[ 4.482094] renesas_sdhi_probe+0x488/0x6f4
[ 4.486281] renesas_sdhi_internal_dmac_probe+0x60/0x78
[ 4.491509] platform_probe+0x64/0xd8
[ 4.495178] really_probe+0xb8/0x2a8
[ 4.498756] __driver_probe_device+0x74/0x118
[ 4.503116] driver_probe_device+0x3c/0x154
[ 4.507303] __device_attach_driver+0xd4/0x160
[ 4.511750] bus_for_each_drv+0x84/0xe0
[ 4.515588] __device_attach_async_helper+0xb0/0xdc
[ 4.520470] async_run_entry_fn+0x30/0xd8
[ 4.524481] process_one_work+0x210/0x62c
[ 4.528494] worker_thread+0x1ac/0x340
[ 4.532245] kthread+0x10c/0x110
[ 4.535476] ret_from_fork+0x10/0x20 |
| In the Linux kernel, the following vulnerability has been resolved:
i2c: npcm: disable interrupt enable bit before devm_request_irq
The customer reports that there is a soft lockup issue related to
the i2c driver. After checking, the i2c module was doing a tx transfer
and the bmc machine reboots in the middle of the i2c transaction, the i2c
module keeps the status without being reset.
Due to such an i2c module status, the i2c irq handler keeps getting
triggered since the i2c irq handler is registered in the kernel booting
process after the bmc machine is doing a warm rebooting.
The continuous triggering is stopped by the soft lockup watchdog timer.
Disable the interrupt enable bit in the i2c module before calling
devm_request_irq to fix this issue since the i2c relative status bit
is read-only.
Here is the soft lockup log.
[ 28.176395] watchdog: BUG: soft lockup - CPU#0 stuck for 26s! [swapper/0:1]
[ 28.183351] Modules linked in:
[ 28.186407] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.15.120-yocto-s-dirty-bbebc78 #1
[ 28.201174] pstate: 40000005 (nZcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 28.208128] pc : __do_softirq+0xb0/0x368
[ 28.212055] lr : __do_softirq+0x70/0x368
[ 28.215972] sp : ffffff8035ebca00
[ 28.219278] x29: ffffff8035ebca00 x28: 0000000000000002 x27: ffffff80071a3780
[ 28.226412] x26: ffffffc008bdc000 x25: ffffffc008bcc640 x24: ffffffc008be50c0
[ 28.233546] x23: ffffffc00800200c x22: 0000000000000000 x21: 000000000000001b
[ 28.240679] x20: 0000000000000000 x19: ffffff80001c3200 x18: ffffffffffffffff
[ 28.247812] x17: ffffffc02d2e0000 x16: ffffff8035eb8b40 x15: 00001e8480000000
[ 28.254945] x14: 02c3647e37dbfcb6 x13: 02c364f2ab14200c x12: 0000000002c364f2
[ 28.262078] x11: 00000000fa83b2da x10: 000000000000b67e x9 : ffffffc008010250
[ 28.269211] x8 : 000000009d983d00 x7 : 7fffffffffffffff x6 : 0000036d74732434
[ 28.276344] x5 : 00ffffffffffffff x4 : 0000000000000015 x3 : 0000000000000198
[ 28.283476] x2 : ffffffc02d2e0000 x1 : 00000000000000e0 x0 : ffffffc008bdcb40
[ 28.290611] Call trace:
[ 28.293052] __do_softirq+0xb0/0x368
[ 28.296625] __irq_exit_rcu+0xe0/0x100
[ 28.300374] irq_exit+0x14/0x20
[ 28.303513] handle_domain_irq+0x68/0x90
[ 28.307440] gic_handle_irq+0x78/0xb0
[ 28.311098] call_on_irq_stack+0x20/0x38
[ 28.315019] do_interrupt_handler+0x54/0x5c
[ 28.319199] el1_interrupt+0x2c/0x4c
[ 28.322777] el1h_64_irq_handler+0x14/0x20
[ 28.326872] el1h_64_irq+0x74/0x78
[ 28.330269] __setup_irq+0x454/0x780
[ 28.333841] request_threaded_irq+0xd0/0x1b4
[ 28.338107] devm_request_threaded_irq+0x84/0x100
[ 28.342809] npcm_i2c_probe_bus+0x188/0x3d0
[ 28.346990] platform_probe+0x6c/0xc4
[ 28.350653] really_probe+0xcc/0x45c
[ 28.354227] __driver_probe_device+0x8c/0x160
[ 28.358578] driver_probe_device+0x44/0xe0
[ 28.362670] __driver_attach+0x124/0x1d0
[ 28.366589] bus_for_each_dev+0x7c/0xe0
[ 28.370426] driver_attach+0x28/0x30
[ 28.373997] bus_add_driver+0x124/0x240
[ 28.377830] driver_register+0x7c/0x124
[ 28.381662] __platform_driver_register+0x2c/0x34
[ 28.386362] npcm_i2c_init+0x3c/0x5c
[ 28.389937] do_one_initcall+0x74/0x230
[ 28.393768] kernel_init_freeable+0x24c/0x2b4
[ 28.398126] kernel_init+0x28/0x130
[ 28.401614] ret_from_fork+0x10/0x20
[ 28.405189] Kernel panic - not syncing: softlockup: hung tasks
[ 28.411011] SMP: stopping secondary CPUs
[ 28.414933] Kernel Offset: disabled
[ 28.418412] CPU features: 0x00000000,00000802
[ 28.427644] Rebooting in 20 seconds.. |
| In the Linux kernel, the following vulnerability has been resolved:
tee: optee: Fix supplicant wait loop
OP-TEE supplicant is a user-space daemon and it's possible for it
be hung or crashed or killed in the middle of processing an OP-TEE
RPC call. It becomes more complicated when there is incorrect shutdown
ordering of the supplicant process vs the OP-TEE client application which
can eventually lead to system hang-up waiting for the closure of the
client application.
Allow the client process waiting in kernel for supplicant response to
be killed rather than indefinitely waiting in an unkillable state. Also,
a normal uninterruptible wait should not have resulted in the hung-task
watchdog getting triggered, but the endless loop would.
This fixes issues observed during system reboot/shutdown when supplicant
got hung for some reason or gets crashed/killed which lead to client
getting hung in an unkillable state. It in turn lead to system being in
hung up state requiring hard power off/on to recover. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: gadget: f_midi: f_midi_complete to call queue_work
When using USB MIDI, a lock is attempted to be acquired twice through a
re-entrant call to f_midi_transmit, causing a deadlock.
Fix it by using queue_work() to schedule the inner f_midi_transmit() via
a high priority work queue from the completion handler. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: x86: Load DR6 with guest value only before entering .vcpu_run() loop
Move the conditional loading of hardware DR6 with the guest's DR6 value
out of the core .vcpu_run() loop to fix a bug where KVM can load hardware
with a stale vcpu->arch.dr6.
When the guest accesses a DR and host userspace isn't debugging the guest,
KVM disables DR interception and loads the guest's values into hardware on
VM-Enter and saves them on VM-Exit. This allows the guest to access DRs
at will, e.g. so that a sequence of DR accesses to configure a breakpoint
only generates one VM-Exit.
For DR0-DR3, the logic/behavior is identical between VMX and SVM, and also
identical between KVM_DEBUGREG_BP_ENABLED (userspace debugging the guest)
and KVM_DEBUGREG_WONT_EXIT (guest using DRs), and so KVM handles loading
DR0-DR3 in common code, _outside_ of the core kvm_x86_ops.vcpu_run() loop.
But for DR6, the guest's value doesn't need to be loaded into hardware for
KVM_DEBUGREG_BP_ENABLED, and SVM provides a dedicated VMCB field whereas
VMX requires software to manually load the guest value, and so loading the
guest's value into DR6 is handled by {svm,vmx}_vcpu_run(), i.e. is done
_inside_ the core run loop.
Unfortunately, saving the guest values on VM-Exit is initiated by common
x86, again outside of the core run loop. If the guest modifies DR6 (in
hardware, when DR interception is disabled), and then the next VM-Exit is
a fastpath VM-Exit, KVM will reload hardware DR6 with vcpu->arch.dr6 and
clobber the guest's actual value.
The bug shows up primarily with nested VMX because KVM handles the VMX
preemption timer in the fastpath, and the window between hardware DR6
being modified (in guest context) and DR6 being read by guest software is
orders of magnitude larger in a nested setup. E.g. in non-nested, the
VMX preemption timer would need to fire precisely between #DB injection
and the #DB handler's read of DR6, whereas with a KVM-on-KVM setup, the
window where hardware DR6 is "dirty" extends all the way from L1 writing
DR6 to VMRESUME (in L1).
L1's view:
==========
<L1 disables DR interception>
CPU 0/KVM-7289 [023] d.... 2925.640961: kvm_entry: vcpu 0
A: L1 Writes DR6
CPU 0/KVM-7289 [023] d.... 2925.640963: <hack>: Set DRs, DR6 = 0xffff0ff1
B: CPU 0/KVM-7289 [023] d.... 2925.640967: kvm_exit: vcpu 0 reason EXTERNAL_INTERRUPT intr_info 0x800000ec
D: L1 reads DR6, arch.dr6 = 0
CPU 0/KVM-7289 [023] d.... 2925.640969: <hack>: Sync DRs, DR6 = 0xffff0ff0
CPU 0/KVM-7289 [023] d.... 2925.640976: kvm_entry: vcpu 0
L2 reads DR6, L1 disables DR interception
CPU 0/KVM-7289 [023] d.... 2925.640980: kvm_exit: vcpu 0 reason DR_ACCESS info1 0x0000000000000216
CPU 0/KVM-7289 [023] d.... 2925.640983: kvm_entry: vcpu 0
CPU 0/KVM-7289 [023] d.... 2925.640983: <hack>: Set DRs, DR6 = 0xffff0ff0
L2 detects failure
CPU 0/KVM-7289 [023] d.... 2925.640987: kvm_exit: vcpu 0 reason HLT
L1 reads DR6 (confirms failure)
CPU 0/KVM-7289 [023] d.... 2925.640990: <hack>: Sync DRs, DR6 = 0xffff0ff0
L0's view:
==========
L2 reads DR6, arch.dr6 = 0
CPU 23/KVM-5046 [001] d.... 3410.005610: kvm_exit: vcpu 23 reason DR_ACCESS info1 0x0000000000000216
CPU 23/KVM-5046 [001] ..... 3410.005610: kvm_nested_vmexit: vcpu 23 reason DR_ACCESS info1 0x0000000000000216
L2 => L1 nested VM-Exit
CPU 23/KVM-5046 [001] ..... 3410.005610: kvm_nested_vmexit_inject: reason: DR_ACCESS ext_inf1: 0x0000000000000216
CPU 23/KVM-5046 [001] d.... 3410.005610: kvm_entry: vcpu 23
CPU 23/KVM-5046 [001] d.... 3410.005611: kvm_exit: vcpu 23 reason VMREAD
CPU 23/KVM-5046 [001] d.... 3410.005611: kvm_entry: vcpu 23
CPU 23/KVM-5046 [001] d.... 3410.
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
clocksource: Use migrate_disable() to avoid calling get_random_u32() in atomic context
The following bug report happened with a PREEMPT_RT kernel:
BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 2012, name: kwatchdog
preempt_count: 1, expected: 0
RCU nest depth: 0, expected: 0
get_random_u32+0x4f/0x110
clocksource_verify_choose_cpus+0xab/0x1a0
clocksource_verify_percpu.part.0+0x6b/0x330
clocksource_watchdog_kthread+0x193/0x1a0
It is due to the fact that clocksource_verify_choose_cpus() is invoked with
preemption disabled. This function invokes get_random_u32() to obtain
random numbers for choosing CPUs. The batched_entropy_32 local lock and/or
the base_crng.lock spinlock in driver/char/random.c will be acquired during
the call. In PREEMPT_RT kernel, they are both sleeping locks and so cannot
be acquired in atomic context.
Fix this problem by using migrate_disable() to allow smp_processor_id() to
be reliably used without introducing atomic context. preempt_disable() is
then called after clocksource_verify_choose_cpus() but before the
clocksource measurement is being run to avoid introducing unexpected
latency. |
| In the Linux kernel, the following vulnerability has been resolved:
net: rose: lock the socket in rose_bind()
syzbot reported a soft lockup in rose_loopback_timer(),
with a repro calling bind() from multiple threads.
rose_bind() must lock the socket to avoid this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
gpio: xilinx: Convert gpio_lock to raw spinlock
irq_chip functions may be called in raw spinlock context. Therefore, we
must also use a raw spinlock for our own internal locking.
This fixes the following lockdep splat:
[ 5.349336] =============================
[ 5.353349] [ BUG: Invalid wait context ]
[ 5.357361] 6.13.0-rc5+ #69 Tainted: G W
[ 5.363031] -----------------------------
[ 5.367045] kworker/u17:1/44 is trying to lock:
[ 5.371587] ffffff88018b02c0 (&chip->gpio_lock){....}-{3:3}, at: xgpio_irq_unmask (drivers/gpio/gpio-xilinx.c:433 (discriminator 8))
[ 5.380079] other info that might help us debug this:
[ 5.385138] context-{5:5}
[ 5.387762] 5 locks held by kworker/u17:1/44:
[ 5.392123] #0: ffffff8800014958 ((wq_completion)events_unbound){+.+.}-{0:0}, at: process_one_work (kernel/workqueue.c:3204)
[ 5.402260] #1: ffffffc082fcbdd8 (deferred_probe_work){+.+.}-{0:0}, at: process_one_work (kernel/workqueue.c:3205)
[ 5.411528] #2: ffffff880172c900 (&dev->mutex){....}-{4:4}, at: __device_attach (drivers/base/dd.c:1006)
[ 5.419929] #3: ffffff88039c8268 (request_class#2){+.+.}-{4:4}, at: __setup_irq (kernel/irq/internals.h:156 kernel/irq/manage.c:1596)
[ 5.428331] #4: ffffff88039c80c8 (lock_class#2){....}-{2:2}, at: __setup_irq (kernel/irq/manage.c:1614)
[ 5.436472] stack backtrace:
[ 5.439359] CPU: 2 UID: 0 PID: 44 Comm: kworker/u17:1 Tainted: G W 6.13.0-rc5+ #69
[ 5.448690] Tainted: [W]=WARN
[ 5.451656] Hardware name: xlnx,zynqmp (DT)
[ 5.455845] Workqueue: events_unbound deferred_probe_work_func
[ 5.461699] Call trace:
[ 5.464147] show_stack+0x18/0x24 C
[ 5.467821] dump_stack_lvl (lib/dump_stack.c:123)
[ 5.471501] dump_stack (lib/dump_stack.c:130)
[ 5.474824] __lock_acquire (kernel/locking/lockdep.c:4828 kernel/locking/lockdep.c:4898 kernel/locking/lockdep.c:5176)
[ 5.478758] lock_acquire (arch/arm64/include/asm/percpu.h:40 kernel/locking/lockdep.c:467 kernel/locking/lockdep.c:5851 kernel/locking/lockdep.c:5814)
[ 5.482429] _raw_spin_lock_irqsave (include/linux/spinlock_api_smp.h:111 kernel/locking/spinlock.c:162)
[ 5.486797] xgpio_irq_unmask (drivers/gpio/gpio-xilinx.c:433 (discriminator 8))
[ 5.490737] irq_enable (kernel/irq/internals.h:236 kernel/irq/chip.c:170 kernel/irq/chip.c:439 kernel/irq/chip.c:432 kernel/irq/chip.c:345)
[ 5.494060] __irq_startup (kernel/irq/internals.h:241 kernel/irq/chip.c:180 kernel/irq/chip.c:250)
[ 5.497645] irq_startup (kernel/irq/chip.c:270)
[ 5.501143] __setup_irq (kernel/irq/manage.c:1807)
[ 5.504728] request_threaded_irq (kernel/irq/manage.c:2208) |
| In the Linux kernel, the following vulnerability has been resolved:
team: prevent adding a device which is already a team device lower
Prevent adding a device which is already a team device lower,
e.g. adding veth0 if vlan1 was already added and veth0 is a lower of
vlan1.
This is not useful in practice and can lead to recursive locking:
$ ip link add veth0 type veth peer name veth1
$ ip link set veth0 up
$ ip link set veth1 up
$ ip link add link veth0 name veth0.1 type vlan protocol 802.1Q id 1
$ ip link add team0 type team
$ ip link set veth0.1 down
$ ip link set veth0.1 master team0
team0: Port device veth0.1 added
$ ip link set veth0 down
$ ip link set veth0 master team0
============================================
WARNING: possible recursive locking detected
6.13.0-rc2-virtme-00441-ga14a429069bb #46 Not tainted
--------------------------------------------
ip/7684 is trying to acquire lock:
ffff888016848e00 (team->team_lock_key){+.+.}-{4:4}, at: team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973)
but task is already holding lock:
ffff888016848e00 (team->team_lock_key){+.+.}-{4:4}, at: team_add_slave (drivers/net/team/team_core.c:1147 drivers/net/team/team_core.c:1977)
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(team->team_lock_key);
lock(team->team_lock_key);
*** DEADLOCK ***
May be due to missing lock nesting notation
2 locks held by ip/7684:
stack backtrace:
CPU: 3 UID: 0 PID: 7684 Comm: ip Not tainted 6.13.0-rc2-virtme-00441-ga14a429069bb #46
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl (lib/dump_stack.c:122)
print_deadlock_bug.cold (kernel/locking/lockdep.c:3040)
__lock_acquire (kernel/locking/lockdep.c:3893 kernel/locking/lockdep.c:5226)
? netlink_broadcast_filtered (net/netlink/af_netlink.c:1548)
lock_acquire.part.0 (kernel/locking/lockdep.c:467 kernel/locking/lockdep.c:5851)
? team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973)
? trace_lock_acquire (./include/trace/events/lock.h:24 (discriminator 2))
? team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973)
? lock_acquire (kernel/locking/lockdep.c:5822)
? team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973)
__mutex_lock (kernel/locking/mutex.c:587 kernel/locking/mutex.c:735)
? team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973)
? team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973)
? fib_sync_up (net/ipv4/fib_semantics.c:2167)
? team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973)
team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973)
notifier_call_chain (kernel/notifier.c:85)
call_netdevice_notifiers_info (net/core/dev.c:1996)
__dev_notify_flags (net/core/dev.c:8993)
? __dev_change_flags (net/core/dev.c:8975)
dev_change_flags (net/core/dev.c:9027)
vlan_device_event (net/8021q/vlan.c:85 net/8021q/vlan.c:470)
? br_device_event (net/bridge/br.c:143)
notifier_call_chain (kernel/notifier.c:85)
call_netdevice_notifiers_info (net/core/dev.c:1996)
dev_open (net/core/dev.c:1519 net/core/dev.c:1505)
team_add_slave (drivers/net/team/team_core.c:1219 drivers/net/team/team_core.c:1977)
? __pfx_team_add_slave (drivers/net/team/team_core.c:1972)
do_set_master (net/core/rtnetlink.c:2917)
do_setlink.isra.0 (net/core/rtnetlink.c:3117) |
| In the Linux kernel, the following vulnerability has been resolved:
memcg: fix soft lockup in the OOM process
A soft lockup issue was found in the product with about 56,000 tasks were
in the OOM cgroup, it was traversing them when the soft lockup was
triggered.
watchdog: BUG: soft lockup - CPU#2 stuck for 23s! [VM Thread:1503066]
CPU: 2 PID: 1503066 Comm: VM Thread Kdump: loaded Tainted: G
Hardware name: Huawei Cloud OpenStack Nova, BIOS
RIP: 0010:console_unlock+0x343/0x540
RSP: 0000:ffffb751447db9a0 EFLAGS: 00000247 ORIG_RAX: ffffffffffffff13
RAX: 0000000000000001 RBX: 0000000000000000 RCX: 00000000ffffffff
RDX: 0000000000000000 RSI: 0000000000000004 RDI: 0000000000000247
RBP: ffffffffafc71f90 R08: 0000000000000000 R09: 0000000000000040
R10: 0000000000000080 R11: 0000000000000000 R12: ffffffffafc74bd0
R13: ffffffffaf60a220 R14: 0000000000000247 R15: 0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f2fe6ad91f0 CR3: 00000004b2076003 CR4: 0000000000360ee0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
vprintk_emit+0x193/0x280
printk+0x52/0x6e
dump_task+0x114/0x130
mem_cgroup_scan_tasks+0x76/0x100
dump_header+0x1fe/0x210
oom_kill_process+0xd1/0x100
out_of_memory+0x125/0x570
mem_cgroup_out_of_memory+0xb5/0xd0
try_charge+0x720/0x770
mem_cgroup_try_charge+0x86/0x180
mem_cgroup_try_charge_delay+0x1c/0x40
do_anonymous_page+0xb5/0x390
handle_mm_fault+0xc4/0x1f0
This is because thousands of processes are in the OOM cgroup, it takes a
long time to traverse all of them. As a result, this lead to soft lockup
in the OOM process.
To fix this issue, call 'cond_resched' in the 'mem_cgroup_scan_tasks'
function per 1000 iterations. For global OOM, call
'touch_softlockup_watchdog' per 1000 iterations to avoid this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix qgroup reserve leaks in cow_file_range
In the buffered write path, the dirty page owns the qgroup reserve until
it creates an ordered_extent.
Therefore, any errors that occur before the ordered_extent is created
must free that reservation, or else the space is leaked. The fstest
generic/475 exercises various IO error paths, and is able to trigger
errors in cow_file_range where we fail to get to allocating the ordered
extent. Note that because we *do* clear delalloc, we are likely to
remove the inode from the delalloc list, so the inodes/pages to not have
invalidate/launder called on them in the commit abort path.
This results in failures at the unmount stage of the test that look like:
BTRFS: error (device dm-8 state EA) in cleanup_transaction:2018: errno=-5 IO failure
BTRFS: error (device dm-8 state EA) in btrfs_replace_file_extents:2416: errno=-5 IO failure
BTRFS warning (device dm-8 state EA): qgroup 0/5 has unreleased space, type 0 rsv 28672
------------[ cut here ]------------
WARNING: CPU: 3 PID: 22588 at fs/btrfs/disk-io.c:4333 close_ctree+0x222/0x4d0 [btrfs]
Modules linked in: btrfs blake2b_generic libcrc32c xor zstd_compress raid6_pq
CPU: 3 PID: 22588 Comm: umount Kdump: loaded Tainted: G W 6.10.0-rc7-gab56fde445b8 #21
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Arch Linux 1.16.3-1-1 04/01/2014
RIP: 0010:close_ctree+0x222/0x4d0 [btrfs]
RSP: 0018:ffffb4465283be00 EFLAGS: 00010202
RAX: 0000000000000001 RBX: ffffa1a1818e1000 RCX: 0000000000000001
RDX: 0000000000000000 RSI: ffffb4465283bbe0 RDI: ffffa1a19374fcb8
RBP: ffffa1a1818e13c0 R08: 0000000100028b16 R09: 0000000000000000
R10: 0000000000000003 R11: 0000000000000003 R12: ffffa1a18ad7972c
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
FS: 00007f9168312b80(0000) GS:ffffa1a4afcc0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f91683c9140 CR3: 000000010acaa000 CR4: 00000000000006f0
Call Trace:
<TASK>
? close_ctree+0x222/0x4d0 [btrfs]
? __warn.cold+0x8e/0xea
? close_ctree+0x222/0x4d0 [btrfs]
? report_bug+0xff/0x140
? handle_bug+0x3b/0x70
? exc_invalid_op+0x17/0x70
? asm_exc_invalid_op+0x1a/0x20
? close_ctree+0x222/0x4d0 [btrfs]
generic_shutdown_super+0x70/0x160
kill_anon_super+0x11/0x40
btrfs_kill_super+0x11/0x20 [btrfs]
deactivate_locked_super+0x2e/0xa0
cleanup_mnt+0xb5/0x150
task_work_run+0x57/0x80
syscall_exit_to_user_mode+0x121/0x130
do_syscall_64+0xab/0x1a0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f916847a887
---[ end trace 0000000000000000 ]---
BTRFS error (device dm-8 state EA): qgroup reserved space leaked
Cases 2 and 3 in the out_reserve path both pertain to this type of leak
and must free the reserved qgroup data. Because it is already an error
path, I opted not to handle the possible errors in
btrfs_free_qgroup_data. |
| In the Linux kernel, the following vulnerability has been resolved:
fs/proc: do_task_stat: use sig->stats_lock to gather the threads/children stats
lock_task_sighand() can trigger a hard lockup. If NR_CPUS threads call
do_task_stat() at the same time and the process has NR_THREADS, it will
spin with irqs disabled O(NR_CPUS * NR_THREADS) time.
Change do_task_stat() to use sig->stats_lock to gather the statistics
outside of ->siglock protected section, in the likely case this code will
run lockless. |
| In the Linux kernel, the following vulnerability has been resolved:
drivers: staging: rtl8723bs: Fix deadlock in rtw_surveydone_event_callback()
There is a deadlock in rtw_surveydone_event_callback(),
which is shown below:
(Thread 1) | (Thread 2)
| _set_timer()
rtw_surveydone_event_callback()| mod_timer()
spin_lock_bh() //(1) | (wait a time)
... | rtw_scan_timeout_handler()
del_timer_sync() | spin_lock_bh() //(2)
(wait timer to stop) | ...
We hold pmlmepriv->lock in position (1) of thread 1 and use
del_timer_sync() to wait timer to stop, but timer handler
also need pmlmepriv->lock in position (2) of thread 2.
As a result, rtw_surveydone_event_callback() will block forever.
This patch extracts del_timer_sync() from the protection of
spin_lock_bh(), which could let timer handler to obtain
the needed lock. What`s more, we change spin_lock_bh() in
rtw_scan_timeout_handler() to spin_lock_irq(). Otherwise,
spin_lock_bh() will also cause deadlock() in timer handler. |
| A flaw was found in the opj2_decompress program in openjpeg2 2.4.0 in the way it handles an input directory with a large number of files. When it fails to allocate a buffer to store the filenames of the input directory, it calls free() on an uninitialized pointer, leading to a segmentation fault and a denial of service. |
| Uninitialized memory in the JavaScript Engine component. This vulnerability affects Firefox < 142, Firefox ESR < 128.14, Firefox ESR < 140.2, Thunderbird < 142, Thunderbird < 128.14, and Thunderbird < 140.2. |
| linux-pam (aka Linux PAM) before 1.6.0 allows attackers to cause a denial of service (blocked login process) via mkfifo because the openat call (for protect_dir) lacks O_DIRECTORY. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix potential deadloop in prepare_compress_overwrite()
Jan Prusakowski reported a kernel hang issue as below:
When running xfstests on linux-next kernel (6.14.0-rc3, 6.12) I
encountered a problem in generic/475 test where fsstress process
gets blocked in __f2fs_write_data_pages() and the test hangs.
The options I used are:
MKFS_OPTIONS -- -O compression -O extra_attr -O project_quota -O quota /dev/vdc
MOUNT_OPTIONS -- -o acl,user_xattr -o discard,compress_extension=* /dev/vdc /vdc
INFO: task kworker/u8:0:11 blocked for more than 122 seconds.
Not tainted 6.14.0-rc3-xfstests-lockdep #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:kworker/u8:0 state:D stack:0 pid:11 tgid:11 ppid:2 task_flags:0x4208160 flags:0x00004000
Workqueue: writeback wb_workfn (flush-253:0)
Call Trace:
<TASK>
__schedule+0x309/0x8e0
schedule+0x3a/0x100
schedule_preempt_disabled+0x15/0x30
__mutex_lock+0x59a/0xdb0
__f2fs_write_data_pages+0x3ac/0x400
do_writepages+0xe8/0x290
__writeback_single_inode+0x5c/0x360
writeback_sb_inodes+0x22f/0x570
wb_writeback+0xb0/0x410
wb_do_writeback+0x47/0x2f0
wb_workfn+0x5a/0x1c0
process_one_work+0x223/0x5b0
worker_thread+0x1d5/0x3c0
kthread+0xfd/0x230
ret_from_fork+0x31/0x50
ret_from_fork_asm+0x1a/0x30
</TASK>
The root cause is: once generic/475 starts toload error table to dm
device, f2fs_prepare_compress_overwrite() will loop reading compressed
cluster pages due to IO error, meanwhile it has held .writepages lock,
it can block all other writeback tasks.
Let's fix this issue w/ below changes:
- add f2fs_handle_page_eio() in prepare_compress_overwrite() to
detect IO error.
- detect cp_error earler in f2fs_read_multi_pages(). |