| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: fix address removal logic in mptcp_pm_nl_rm_addr
Fix inverted WARN_ON_ONCE condition that prevented normal address
removal counter updates. The current code only executes decrement
logic when the counter is already 0 (abnormal state), while
normal removals (counter > 0) are ignored. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: fix PTP cleanup on driver removal in error path
Improve the cleanup on releasing PTP resources in error path.
The error case might happen either at the driver probe and PTP
feature initialization or on PTP restart (errors in reset handling, NVM
update etc). In both cases, calls to PF PTP cleanup (ice_ptp_cleanup_pf
function) and 'ps_lock' mutex deinitialization were missed.
Additionally, ptp clock was not unregistered in the latter case.
Keep PTP state as 'uninitialized' on init to distinguish between error
scenarios and to avoid resource release duplication at driver removal.
The consequence of missing ice_ptp_cleanup_pf call is the following call
trace dumped when ice_adapter object is freed (port list is not empty,
as it is required at this stage):
[ T93022] ------------[ cut here ]------------
[ T93022] WARNING: CPU: 10 PID: 93022 at
ice/ice_adapter.c:67 ice_adapter_put+0xef/0x100 [ice]
...
[ T93022] RIP: 0010:ice_adapter_put+0xef/0x100 [ice]
...
[ T93022] Call Trace:
[ T93022] <TASK>
[ T93022] ? ice_adapter_put+0xef/0x100 [ice
33d2647ad4f6d866d41eefff1806df37c68aef0c]
[ T93022] ? __warn.cold+0xb0/0x10e
[ T93022] ? ice_adapter_put+0xef/0x100 [ice
33d2647ad4f6d866d41eefff1806df37c68aef0c]
[ T93022] ? report_bug+0xd8/0x150
[ T93022] ? handle_bug+0xe9/0x110
[ T93022] ? exc_invalid_op+0x17/0x70
[ T93022] ? asm_exc_invalid_op+0x1a/0x20
[ T93022] ? ice_adapter_put+0xef/0x100 [ice
33d2647ad4f6d866d41eefff1806df37c68aef0c]
[ T93022] pci_device_remove+0x42/0xb0
[ T93022] device_release_driver_internal+0x19f/0x200
[ T93022] driver_detach+0x48/0x90
[ T93022] bus_remove_driver+0x70/0xf0
[ T93022] pci_unregister_driver+0x42/0xb0
[ T93022] ice_module_exit+0x10/0xdb0 [ice
33d2647ad4f6d866d41eefff1806df37c68aef0c]
...
[ T93022] ---[ end trace 0000000000000000 ]---
[ T93022] ice: module unloaded |
| In the Linux kernel, the following vulnerability has been resolved:
mm/mempool: fix poisoning order>0 pages with HIGHMEM
The kernel test has reported:
BUG: unable to handle page fault for address: fffba000
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
*pde = 03171067 *pte = 00000000
Oops: Oops: 0002 [#1]
CPU: 0 UID: 0 PID: 1 Comm: swapper/0 Tainted: G T 6.18.0-rc2-00031-gec7f31b2a2d3 #1 NONE a1d066dfe789f54bc7645c7989957d2bdee593ca
Tainted: [T]=RANDSTRUCT
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
EIP: memset (arch/x86/include/asm/string_32.h:168 arch/x86/lib/memcpy_32.c:17)
Code: a5 8b 4d f4 83 e1 03 74 02 f3 a4 83 c4 04 5e 5f 5d 2e e9 73 41 01 00 90 90 90 3e 8d 74 26 00 55 89 e5 57 56 89 c6 89 d0 89 f7 <f3> aa 89 f0 5e 5f 5d 2e e9 53 41 01 00 cc cc cc 55 89 e5 53 57 56
EAX: 0000006b EBX: 00000015 ECX: 001fefff EDX: 0000006b
ESI: fffb9000 EDI: fffba000 EBP: c611fbf0 ESP: c611fbe8
DS: 007b ES: 007b FS: 0000 GS: 0000 SS: 0068 EFLAGS: 00010287
CR0: 80050033 CR2: fffba000 CR3: 0316e000 CR4: 00040690
Call Trace:
poison_element (mm/mempool.c:83 mm/mempool.c:102)
mempool_init_node (mm/mempool.c:142 mm/mempool.c:226)
mempool_init_noprof (mm/mempool.c:250 (discriminator 1))
? mempool_alloc_pages (mm/mempool.c:640)
bio_integrity_initfn (block/bio-integrity.c:483 (discriminator 8))
? mempool_alloc_pages (mm/mempool.c:640)
do_one_initcall (init/main.c:1283)
Christoph found out this is due to the poisoning code not dealing
properly with CONFIG_HIGHMEM because only the first page is mapped but
then the whole potentially high-order page is accessed.
We could give up on HIGHMEM here, but it's straightforward to fix this
with a loop that's mapping, poisoning or checking and unmapping
individual pages. |
| In the Linux kernel, the following vulnerability has been resolved:
fs: Fix uninitialized 'offp' in statmount_string()
In statmount_string(), most flags assign an output offset pointer (offp)
which is later updated with the string offset. However, the
STATMOUNT_MNT_UIDMAP and STATMOUNT_MNT_GIDMAP cases directly set the
struct fields instead of using offp. This leaves offp uninitialized,
leading to a possible uninitialized dereference when *offp is updated.
Fix it by assigning offp for UIDMAP and GIDMAP as well, keeping the code
path consistent. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86: intel: punit_ipc: fix memory corruption
This passes the address of the pointer "&punit_ipcdev" when the intent
was to pass the pointer itself "punit_ipcdev" (without the ampersand).
This means that the:
complete(&ipcdev->cmd_complete);
in intel_punit_ioc() will write to a wrong memory address corrupting it. |
| In the Linux kernel, the following vulnerability has been resolved:
most: usb: hdm_probe: Fix calling put_device() before device initialization
The early error path in hdm_probe() can jump to err_free_mdev before
&mdev->dev has been initialized with device_initialize(). Calling
put_device(&mdev->dev) there triggers a device core WARN and ends up
invoking kref_put(&kobj->kref, kobject_release) on an uninitialized
kobject.
In this path the private struct was only kmalloc'ed and the intended
release is effectively kfree(mdev) anyway, so free it directly instead
of calling put_device() on an uninitialized device.
This removes the WARNING and fixes the pre-initialization error path. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: btusb: mediatek: Avoid btusb_mtk_claim_iso_intf() NULL deref
In btusb_mtk_setup(), we set `btmtk_data->isopkt_intf` to:
usb_ifnum_to_if(data->udev, MTK_ISO_IFNUM)
That function can return NULL in some cases. Even when it returns
NULL, though, we still go on to call btusb_mtk_claim_iso_intf().
As of commit e9087e828827 ("Bluetooth: btusb: mediatek: Add locks for
usb_driver_claim_interface()"), calling btusb_mtk_claim_iso_intf()
when `btmtk_data->isopkt_intf` is NULL will cause a crash because
we'll end up passing a bad pointer to device_lock(). Prior to that
commit we'd pass the NULL pointer directly to
usb_driver_claim_interface() which would detect it and return an
error, which was handled.
Resolve the crash in btusb_mtk_claim_iso_intf() by adding a NULL check
at the start of the function. This makes the code handle a NULL
`btmtk_data->isopkt_intf` the same way it did before the problematic
commit (just with a slight change to the error message printed). |
| In the Linux kernel, the following vulnerability has been resolved:
fs/namespace: fix reference leak in grab_requested_mnt_ns
lookup_mnt_ns() already takes a reference on mnt_ns.
grab_requested_mnt_ns() doesn't need to take an extra reference. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: target: tcm_loop: Fix segfault in tcm_loop_tpg_address_show()
If the allocation of tl_hba->sh fails in tcm_loop_driver_probe() and we
attempt to dereference it in tcm_loop_tpg_address_show() we will get a
segfault, see below for an example. So, check tl_hba->sh before
dereferencing it.
Unable to allocate struct scsi_host
BUG: kernel NULL pointer dereference, address: 0000000000000194
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 1 PID: 8356 Comm: tokio-runtime-w Not tainted 6.6.104.2-4.azl3 #1
Hardware name: Microsoft Corporation Virtual Machine/Virtual Machine, BIOS Hyper-V UEFI Release v4.1 09/28/2024
RIP: 0010:tcm_loop_tpg_address_show+0x2e/0x50 [tcm_loop]
...
Call Trace:
<TASK>
configfs_read_iter+0x12d/0x1d0 [configfs]
vfs_read+0x1b5/0x300
ksys_read+0x6f/0xf0
... |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/cmd_net: fix wrong argument types for skb_queue_splice()
If timestamp retriving needs to be retried and the local list of
SKB's already has entries, then it's spliced back into the socket
queue. However, the arguments for the splice helper are transposed,
causing exactly the wrong direction of splicing into the on-stack
list. Fix that up. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_core: lookup hci_conn on RX path on protocol side
The hdev lock/lookup/unlock/use pattern in the packet RX path doesn't
ensure hci_conn* is not concurrently modified/deleted. This locking
appears to be leftover from before conn_hash started using RCU
commit bf4c63252490b ("Bluetooth: convert conn hash to RCU")
and not clear if it had purpose since then.
Currently, there are code paths that delete hci_conn* from elsewhere
than the ordered hdev->workqueue where the RX work runs in. E.g.
commit 5af1f84ed13a ("Bluetooth: hci_sync: Fix UAF on hci_abort_conn_sync")
introduced some of these, and there probably were a few others before
it. It's better to do the locking so that even if these run
concurrently no UAF is possible.
Move the lookup of hci_conn and associated socket-specific conn to
protocol recv handlers, and do them within a single critical section
to cover hci_conn* usage and lookup.
syzkaller has reported a crash that appears to be this issue:
[Task hdev->workqueue] [Task 2]
hci_disconnect_all_sync
l2cap_recv_acldata(hcon)
hci_conn_get(hcon)
hci_abort_conn_sync(hcon)
hci_dev_lock
hci_dev_lock
hci_conn_del(hcon)
v-------------------------------- hci_dev_unlock
hci_conn_put(hcon)
conn = hcon->l2cap_data (UAF) |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_sock: Prevent race in socket write iter and sock bind
There is a potential race condition between sock bind and socket write
iter. bind may free the same cmd via mgmt_pending before write iter sends
the cmd, just as syzbot reported in UAF[1].
Here we use hci_dev_lock to synchronize the two, thereby avoiding the
UAF mentioned in [1].
[1]
syzbot reported:
BUG: KASAN: slab-use-after-free in mgmt_pending_remove+0x3b/0x210 net/bluetooth/mgmt_util.c:316
Read of size 8 at addr ffff888077164818 by task syz.0.17/5989
Call Trace:
mgmt_pending_remove+0x3b/0x210 net/bluetooth/mgmt_util.c:316
set_link_security+0x5c2/0x710 net/bluetooth/mgmt.c:1918
hci_mgmt_cmd+0x9c9/0xef0 net/bluetooth/hci_sock.c:1719
hci_sock_sendmsg+0x6ca/0xef0 net/bluetooth/hci_sock.c:1839
sock_sendmsg_nosec net/socket.c:727 [inline]
__sock_sendmsg+0x21c/0x270 net/socket.c:742
sock_write_iter+0x279/0x360 net/socket.c:1195
Allocated by task 5989:
mgmt_pending_add+0x35/0x140 net/bluetooth/mgmt_util.c:296
set_link_security+0x557/0x710 net/bluetooth/mgmt.c:1910
hci_mgmt_cmd+0x9c9/0xef0 net/bluetooth/hci_sock.c:1719
hci_sock_sendmsg+0x6ca/0xef0 net/bluetooth/hci_sock.c:1839
sock_sendmsg_nosec net/socket.c:727 [inline]
__sock_sendmsg+0x21c/0x270 net/socket.c:742
sock_write_iter+0x279/0x360 net/socket.c:1195
Freed by task 5991:
mgmt_pending_free net/bluetooth/mgmt_util.c:311 [inline]
mgmt_pending_foreach+0x30d/0x380 net/bluetooth/mgmt_util.c:257
mgmt_index_removed+0x112/0x2f0 net/bluetooth/mgmt.c:9477
hci_sock_bind+0xbe9/0x1000 net/bluetooth/hci_sock.c:1314 |
| In the Linux kernel, the following vulnerability has been resolved:
nilfs2: avoid having an active sc_timer before freeing sci
Because kthread_stop did not stop sc_task properly and returned -EINTR,
the sc_timer was not properly closed, ultimately causing the problem [1]
reported by syzbot when freeing sci due to the sc_timer not being closed.
Because the thread sc_task main function nilfs_segctor_thread() returns 0
when it succeeds, when the return value of kthread_stop() is not 0 in
nilfs_segctor_destroy(), we believe that it has not properly closed
sc_timer.
We use timer_shutdown_sync() to sync wait for sc_timer to shutdown, and
set the value of sc_task to NULL under the protection of lock
sc_state_lock, so as to avoid the issue caused by sc_timer not being
properly shutdowned.
[1]
ODEBUG: free active (active state 0) object: 00000000dacb411a object type: timer_list hint: nilfs_construction_timeout
Call trace:
nilfs_segctor_destroy fs/nilfs2/segment.c:2811 [inline]
nilfs_detach_log_writer+0x668/0x8cc fs/nilfs2/segment.c:2877
nilfs_put_super+0x4c/0x12c fs/nilfs2/super.c:509 |
| In the Linux kernel, the following vulnerability has been resolved:
Input: pegasus-notetaker - fix potential out-of-bounds access
In the pegasus_notetaker driver, the pegasus_probe() function allocates
the URB transfer buffer using the wMaxPacketSize value from
the endpoint descriptor. An attacker can use a malicious USB descriptor
to force the allocation of a very small buffer.
Subsequently, if the device sends an interrupt packet with a specific
pattern (e.g., where the first byte is 0x80 or 0x42),
the pegasus_parse_packet() function parses the packet without checking
the allocated buffer size. This leads to an out-of-bounds memory access. |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: fix memory leak in smb3_fs_context_parse_param error path
Add proper cleanup of ctx->source and fc->source to the
cifs_parse_mount_err error handler. This ensures that memory allocated
for the source strings is correctly freed on all error paths, matching
the cleanup already performed in the success path by
smb3_cleanup_fs_context_contents().
Pointers are also set to NULL after freeing to prevent potential
double-free issues.
This change fixes a memory leak originally detected by syzbot. The
leak occurred when processing Opt_source mount options if an error
happened after ctx->source and fc->source were successfully
allocated but before the function completed.
The specific leak sequence was:
1. ctx->source = smb3_fs_context_fullpath(ctx, '/') allocates memory
2. fc->source = kstrdup(ctx->source, GFP_KERNEL) allocates more memory
3. A subsequent error jumps to cifs_parse_mount_err
4. The old error handler freed passwords but not the source strings,
causing the memory to leak.
This issue was not addressed by commit e8c73eb7db0a ("cifs: client:
fix memory leak in smb3_fs_context_parse_param"), which only fixed
leaks from repeated fsconfig() calls but not this error path.
Patch updated with minor change suggested by kernel test robot |
| In the Linux kernel, the following vulnerability has been resolved:
pinctrl: s32cc: fix uninitialized memory in s32_pinctrl_desc
s32_pinctrl_desc is allocated with devm_kmalloc(), but not all of its
fields are initialized. Notably, num_custom_params is used in
pinconf_generic_parse_dt_config(), resulting in intermittent allocation
errors, such as the following splat when probing i2c-imx:
WARNING: CPU: 0 PID: 176 at mm/page_alloc.c:4795 __alloc_pages_noprof+0x290/0x300
[...]
Hardware name: NXP S32G3 Reference Design Board 3 (S32G-VNP-RDB3) (DT)
[...]
Call trace:
__alloc_pages_noprof+0x290/0x300 (P)
___kmalloc_large_node+0x84/0x168
__kmalloc_large_node_noprof+0x34/0x120
__kmalloc_noprof+0x2ac/0x378
pinconf_generic_parse_dt_config+0x68/0x1a0
s32_dt_node_to_map+0x104/0x248
dt_to_map_one_config+0x154/0x1d8
pinctrl_dt_to_map+0x12c/0x280
create_pinctrl+0x6c/0x270
pinctrl_get+0xc0/0x170
devm_pinctrl_get+0x50/0xa0
pinctrl_bind_pins+0x60/0x2a0
really_probe+0x60/0x3a0
[...]
__platform_driver_register+0x2c/0x40
i2c_adap_imx_init+0x28/0xff8 [i2c_imx]
[...]
This results in later parse failures that can cause issues in dependent
drivers:
s32g-siul2-pinctrl 4009c240.pinctrl: /soc@0/pinctrl@4009c240/i2c0-pins/i2c0-grp0: could not parse node property
s32g-siul2-pinctrl 4009c240.pinctrl: /soc@0/pinctrl@4009c240/i2c0-pins/i2c0-grp0: could not parse node property
[...]
pca953x 0-0022: failed writing register: -6
i2c i2c-0: IMX I2C adapter registered
s32g-siul2-pinctrl 4009c240.pinctrl: /soc@0/pinctrl@4009c240/i2c2-pins/i2c2-grp0: could not parse node property
s32g-siul2-pinctrl 4009c240.pinctrl: /soc@0/pinctrl@4009c240/i2c2-pins/i2c2-grp0: could not parse node property
i2c i2c-1: IMX I2C adapter registered
s32g-siul2-pinctrl 4009c240.pinctrl: /soc@0/pinctrl@4009c240/i2c4-pins/i2c4-grp0: could not parse node property
s32g-siul2-pinctrl 4009c240.pinctrl: /soc@0/pinctrl@4009c240/i2c4-pins/i2c4-grp0: could not parse node property
i2c i2c-2: IMX I2C adapter registered
Fix this by initializing s32_pinctrl_desc with devm_kzalloc() instead of
devm_kmalloc() in s32_pinctrl_probe(), which sets the previously
uninitialized fields to zero. |
| In the Linux kernel, the following vulnerability has been resolved:
drm, fbcon, vga_switcheroo: Avoid race condition in fbcon setup
Protect vga_switcheroo_client_fb_set() with console lock. Avoids OOB
access in fbcon_remap_all(). Without holding the console lock the call
races with switching outputs.
VGA switcheroo calls fbcon_remap_all() when switching clients. The fbcon
function uses struct fb_info.node, which is set by register_framebuffer().
As the fb-helper code currently sets up VGA switcheroo before registering
the framebuffer, the value of node is -1 and therefore not a legal value.
For example, fbcon uses the value within set_con2fb_map() [1] as an index
into an array.
Moving vga_switcheroo_client_fb_set() after register_framebuffer() can
result in VGA switching that does not switch fbcon correctly.
Therefore move vga_switcheroo_client_fb_set() under fbcon_fb_registered(),
which already holds the console lock. Fbdev calls fbcon_fb_registered()
from within register_framebuffer(). Serializes the helper with VGA
switcheroo's call to fbcon_remap_all().
Although vga_switcheroo_client_fb_set() takes an instance of struct fb_info
as parameter, it really only needs the contained fbcon state. Moving the
call to fbcon initialization is therefore cleaner than before. Only amdgpu,
i915, nouveau and radeon support vga_switcheroo. For all other drivers,
this change does nothing. |
| In the Linux kernel, the following vulnerability has been resolved:
NFS: Check the TLS certificate fields in nfs_match_client()
If the TLS security policy is of type RPC_XPRTSEC_TLS_X509, then the
cert_serial and privkey_serial fields need to match as well since they
define the client's identity, as presented to the server. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/huge_memory: fix NULL pointer deference when splitting folio
Commit c010d47f107f ("mm: thp: split huge page to any lower order pages")
introduced an early check on the folio's order via mapping->flags before
proceeding with the split work.
This check introduced a bug: for shmem folios in the swap cache and
truncated folios, the mapping pointer can be NULL. Accessing
mapping->flags in this state leads directly to a NULL pointer dereference.
This commit fixes the issue by moving the check for mapping != NULL before
any attempt to access mapping->flags. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm: make sure last_fence is always updated
Update last_fence in the vm-bind path instead of kernel managed path.
last_fence is used to wait for work to finish in vm_bind contexts but not
used for kernel managed contexts.
This fixes a bug where last_fence is not waited on context close leading
to faults as resources are freed while in use.
Patchwork: https://patchwork.freedesktop.org/patch/680080/ |