Filtered by vendor Linux
Subscriptions
Total
13302 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2022-49766 | 1 Linux | 1 Linux Kernel | 2025-06-24 | 7.0 High |
In the Linux kernel, the following vulnerability has been resolved: netlink: Bounds-check struct nlmsgerr creation In preparation for FORTIFY_SOURCE doing bounds-check on memcpy(), switch from __nlmsg_put to nlmsg_put(), and explain the bounds check for dealing with the memcpy() across a composite flexible array struct. Avoids this future run-time warning: memcpy: detected field-spanning write (size 32) of single field "&errmsg->msg" at net/netlink/af_netlink.c:2447 (size 16) | ||||
CVE-2022-49838 | 1 Linux | 1 Linux Kernel | 2025-06-24 | 4.4 Medium |
In the Linux kernel, the following vulnerability has been resolved: sctp: clear out_curr if all frag chunks of current msg are pruned A crash was reported by Zhen Chen: list_del corruption, ffffa035ddf01c18->next is NULL WARNING: CPU: 1 PID: 250682 at lib/list_debug.c:49 __list_del_entry_valid+0x59/0xe0 RIP: 0010:__list_del_entry_valid+0x59/0xe0 Call Trace: sctp_sched_dequeue_common+0x17/0x70 [sctp] sctp_sched_fcfs_dequeue+0x37/0x50 [sctp] sctp_outq_flush_data+0x85/0x360 [sctp] sctp_outq_uncork+0x77/0xa0 [sctp] sctp_cmd_interpreter.constprop.0+0x164/0x1450 [sctp] sctp_side_effects+0x37/0xe0 [sctp] sctp_do_sm+0xd0/0x230 [sctp] sctp_primitive_SEND+0x2f/0x40 [sctp] sctp_sendmsg_to_asoc+0x3fa/0x5c0 [sctp] sctp_sendmsg+0x3d5/0x440 [sctp] sock_sendmsg+0x5b/0x70 and in sctp_sched_fcfs_dequeue() it dequeued a chunk from stream out_curr outq while this outq was empty. Normally stream->out_curr must be set to NULL once all frag chunks of current msg are dequeued, as we can see in sctp_sched_dequeue_done(). However, in sctp_prsctp_prune_unsent() as it is not a proper dequeue, sctp_sched_dequeue_done() is not called to do this. This patch is to fix it by simply setting out_curr to NULL when the last frag chunk of current msg is dequeued from out_curr stream in sctp_prsctp_prune_unsent(). | ||||
CVE-2023-53080 | 1 Linux | 1 Linux Kernel | 2025-06-24 | 4.1 Medium |
In the Linux kernel, the following vulnerability has been resolved: xsk: Add missing overflow check in xdp_umem_reg The number of chunks can overflow u32. Make sure to return -EINVAL on overflow. Also remove a redundant u32 cast assigning umem->npgs. | ||||
CVE-2022-49825 | 1 Linux | 1 Linux Kernel | 2025-06-24 | 4.4 Medium |
In the Linux kernel, the following vulnerability has been resolved: ata: libata-transport: fix error handling in ata_tport_add() In ata_tport_add(), the return value of transport_add_device() is not checked. As a result, it causes null-ptr-deref while removing the module, because transport_remove_device() is called to remove the device that was not added. Unable to handle kernel NULL pointer dereference at virtual address 00000000000000d0 CPU: 12 PID: 13605 Comm: rmmod Kdump: loaded Tainted: G W 6.1.0-rc3+ #8 pstate: 60400009 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : device_del+0x48/0x39c lr : device_del+0x44/0x39c Call trace: device_del+0x48/0x39c attribute_container_class_device_del+0x28/0x40 transport_remove_classdev+0x60/0x7c attribute_container_device_trigger+0x118/0x120 transport_remove_device+0x20/0x30 ata_tport_delete+0x34/0x60 [libata] ata_port_detach+0x148/0x1b0 [libata] ata_pci_remove_one+0x50/0x80 [libata] ahci_remove_one+0x4c/0x8c [ahci] Fix this by checking and handling return value of transport_add_device() in ata_tport_add(). | ||||
CVE-2022-49801 | 1 Linux | 1 Linux Kernel | 2025-06-24 | 4.1 Medium |
In the Linux kernel, the following vulnerability has been resolved: tracing: Fix memory leak in tracing_read_pipe() kmemleak reports this issue: unreferenced object 0xffff888105a18900 (size 128): comm "test_progs", pid 18933, jiffies 4336275356 (age 22801.766s) hex dump (first 32 bytes): 25 73 00 90 81 88 ff ff 26 05 00 00 42 01 58 04 %s......&...B.X. 03 00 00 00 02 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<00000000560143a1>] __kmalloc_node_track_caller+0x4a/0x140 [<000000006af00822>] krealloc+0x8d/0xf0 [<00000000c309be6a>] trace_iter_expand_format+0x99/0x150 [<000000005a53bdb6>] trace_check_vprintf+0x1e0/0x11d0 [<0000000065629d9d>] trace_event_printf+0xb6/0xf0 [<000000009a690dc7>] trace_raw_output_bpf_trace_printk+0x89/0xc0 [<00000000d22db172>] print_trace_line+0x73c/0x1480 [<00000000cdba76ba>] tracing_read_pipe+0x45c/0x9f0 [<0000000015b58459>] vfs_read+0x17b/0x7c0 [<000000004aeee8ed>] ksys_read+0xed/0x1c0 [<0000000063d3d898>] do_syscall_64+0x3b/0x90 [<00000000a06dda7f>] entry_SYSCALL_64_after_hwframe+0x63/0xcd iter->fmt alloced in tracing_read_pipe() -> .. ->trace_iter_expand_format(), but not freed, to fix, add free in tracing_release_pipe() | ||||
CVE-2022-49835 | 1 Linux | 1 Linux Kernel | 2025-06-24 | 3.3 Low |
In the Linux kernel, the following vulnerability has been resolved: ALSA: hda: fix potential memleak in 'add_widget_node' As 'kobject_add' may allocated memory for 'kobject->name' when return error. And in this function, if call 'kobject_add' failed didn't free kobject. So call 'kobject_put' to recycling resources. | ||||
CVE-2023-53037 | 1 Linux | 1 Linux Kernel | 2025-06-24 | 4.1 Medium |
In the Linux kernel, the following vulnerability has been resolved: scsi: mpi3mr: Bad drive in topology results kernel crash When the SAS Transport Layer support is enabled and a device exposed to the OS by the driver fails INQUIRY commands, the driver frees up the memory allocated for an internal HBA port data structure. However, in some places, the reference to the freed memory is not cleared. When the firmware sends the Device Info change event for the same device again, the freed memory is accessed and that leads to memory corruption and OS crash. | ||||
CVE-2022-49780 | 1 Linux | 1 Linux Kernel | 2025-06-24 | 4.4 Medium |
In the Linux kernel, the following vulnerability has been resolved: scsi: target: tcm_loop: Fix possible name leak in tcm_loop_setup_hba_bus() If device_register() fails in tcm_loop_setup_hba_bus(), the name allocated by dev_set_name() need be freed. As comment of device_register() says, it should use put_device() to give up the reference in the error path. So fix this by calling put_device(), then the name can be freed in kobject_cleanup(). The 'tl_hba' will be freed in tcm_loop_release_adapter(), so it don't need goto error label in this case. | ||||
CVE-2023-53055 | 1 Linux | 1 Linux Kernel | 2025-06-24 | 2.3 Low |
In the Linux kernel, the following vulnerability has been resolved: fscrypt: destroy keyring after security_sb_delete() fscrypt_destroy_keyring() must be called after all potentially-encrypted inodes were evicted; otherwise it cannot safely destroy the keyring. Since inodes that are in-use by the Landlock LSM don't get evicted until security_sb_delete(), this means that fscrypt_destroy_keyring() must be called *after* security_sb_delete(). This fixes a WARN_ON followed by a NULL dereference, only possible if Landlock was being used on encrypted files. | ||||
CVE-2022-49905 | 1 Linux | 1 Linux Kernel | 2025-06-24 | 4.4 Medium |
In the Linux kernel, the following vulnerability has been resolved: net/smc: Fix possible leaked pernet namespace in smc_init() In smc_init(), register_pernet_subsys(&smc_net_stat_ops) is called without any error handling. If it fails, registering of &smc_net_ops won't be reverted. And if smc_nl_init() fails, &smc_net_stat_ops itself won't be reverted. This leaves wild ops in subsystem linkedlist and when another module tries to call register_pernet_operations() it triggers page fault: BUG: unable to handle page fault for address: fffffbfff81b964c RIP: 0010:register_pernet_operations+0x1b9/0x5f0 Call Trace: <TASK> register_pernet_subsys+0x29/0x40 ebtables_init+0x58/0x1000 [ebtables] ... | ||||
CVE-2022-49785 | 1 Linux | 1 Linux Kernel | 2025-06-24 | 7.1 High |
In the Linux kernel, the following vulnerability has been resolved: x86/sgx: Add overflow check in sgx_validate_offset_length() sgx_validate_offset_length() function verifies "offset" and "length" arguments provided by userspace, but was missing an overflow check on their addition. Add it. | ||||
CVE-2022-49817 | 1 Linux | 1 Linux Kernel | 2025-06-24 | 7.0 High |
In the Linux kernel, the following vulnerability has been resolved: net: mhi: Fix memory leak in mhi_net_dellink() MHI driver registers network device without setting the needs_free_netdev flag, and does NOT call free_netdev() when unregisters network device, which causes a memory leak. This patch calls free_netdev() to fix it since netdev_priv is used after unregister. | ||||
CVE-2022-49832 | 1 Linux | 1 Linux Kernel | 2025-06-24 | 4.1 Medium |
In the Linux kernel, the following vulnerability has been resolved: pinctrl: devicetree: fix null pointer dereferencing in pinctrl_dt_to_map Here is the BUG report by KASAN about null pointer dereference: BUG: KASAN: null-ptr-deref in strcmp+0x2e/0x50 Read of size 1 at addr 0000000000000000 by task python3/2640 Call Trace: strcmp __of_find_property of_find_property pinctrl_dt_to_map kasprintf() would return NULL pointer when kmalloc() fail to allocate. So directly return ENOMEM, if kasprintf() return NULL pointer. | ||||
CVE-2022-49822 | 1 Linux | 1 Linux Kernel | 2025-06-24 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: cifs: Fix connections leak when tlink setup failed If the tlink setup failed, lost to put the connections, then the module refcnt leak since the cifsd kthread not exit. Also leak the fscache info, and for next mount with fsc, it will print the follow errors: CIFS: Cache volume key already in use (cifs,127.0.0.1:445,TEST) Let's check the result of tlink setup, and do some cleanup. | ||||
CVE-2023-53136 | 1 Linux | 1 Linux Kernel | 2025-06-24 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: af_unix: fix struct pid leaks in OOB support syzbot reported struct pid leak [1]. Issue is that queue_oob() calls maybe_add_creds() which potentially holds a reference on a pid. But skb->destructor is not set (either directly or by calling unix_scm_to_skb()) This means that subsequent kfree_skb() or consume_skb() would leak this reference. In this fix, I chose to fully support scm even for the OOB message. [1] BUG: memory leak unreferenced object 0xffff8881053e7f80 (size 128): comm "syz-executor242", pid 5066, jiffies 4294946079 (age 13.220s) hex dump (first 32 bytes): 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<ffffffff812ae26a>] alloc_pid+0x6a/0x560 kernel/pid.c:180 [<ffffffff812718df>] copy_process+0x169f/0x26c0 kernel/fork.c:2285 [<ffffffff81272b37>] kernel_clone+0xf7/0x610 kernel/fork.c:2684 [<ffffffff812730cc>] __do_sys_clone+0x7c/0xb0 kernel/fork.c:2825 [<ffffffff849ad699>] do_syscall_x64 arch/x86/entry/common.c:50 [inline] [<ffffffff849ad699>] do_syscall_64+0x39/0xb0 arch/x86/entry/common.c:80 [<ffffffff84a0008b>] entry_SYSCALL_64_after_hwframe+0x63/0xcd | ||||
CVE-2022-49769 | 1 Linux | 1 Linux Kernel | 2025-06-24 | 3.3 Low |
In the Linux kernel, the following vulnerability has been resolved: gfs2: Check sb_bsize_shift after reading superblock Fuzzers like to scribble over sb_bsize_shift but in reality it's very unlikely that this field would be corrupted on its own. Nevertheless it should be checked to avoid the possibility of messy mount errors due to bad calculations. It's always a fixed value based on the block size so we can just check that it's the expected value. Tested with: mkfs.gfs2 -O -p lock_nolock /dev/vdb for i in 0 -1 64 65 32 33; do gfs2_edit -p sb field sb_bsize_shift $i /dev/vdb mount /dev/vdb /mnt/test && umount /mnt/test done Before this patch we get a withdraw after [ 76.413681] gfs2: fsid=loop0.0: fatal: invalid metadata block [ 76.413681] bh = 19 (type: exp=5, found=4) [ 76.413681] function = gfs2_meta_buffer, file = fs/gfs2/meta_io.c, line = 492 and with UBSAN configured we also get complaints like [ 76.373395] UBSAN: shift-out-of-bounds in fs/gfs2/ops_fstype.c:295:19 [ 76.373815] shift exponent 4294967287 is too large for 64-bit type 'long unsigned int' After the patch, these complaints don't appear, mount fails immediately and we get an explanation in dmesg. | ||||
CVE-2022-49782 | 1 Linux | 1 Linux Kernel | 2025-06-24 | 4.7 Medium |
In the Linux kernel, the following vulnerability has been resolved: perf: Improve missing SIGTRAP checking To catch missing SIGTRAP we employ a WARN in __perf_event_overflow(), which fires if pending_sigtrap was already set: returning to user space without consuming pending_sigtrap, and then having the event fire again would re-enter the kernel and trigger the WARN. This, however, seemed to miss the case where some events not associated with progress in the user space task can fire and the interrupt handler runs before the IRQ work meant to consume pending_sigtrap (and generate the SIGTRAP). syzbot gifted us this stack trace: | WARNING: CPU: 0 PID: 3607 at kernel/events/core.c:9313 __perf_event_overflow | Modules linked in: | CPU: 0 PID: 3607 Comm: syz-executor100 Not tainted 6.1.0-rc2-syzkaller-00073-g88619e77b33d #0 | Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/11/2022 | RIP: 0010:__perf_event_overflow+0x498/0x540 kernel/events/core.c:9313 | <...> | Call Trace: | <TASK> | perf_swevent_hrtimer+0x34f/0x3c0 kernel/events/core.c:10729 | __run_hrtimer kernel/time/hrtimer.c:1685 [inline] | __hrtimer_run_queues+0x1c6/0xfb0 kernel/time/hrtimer.c:1749 | hrtimer_interrupt+0x31c/0x790 kernel/time/hrtimer.c:1811 | local_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1096 [inline] | __sysvec_apic_timer_interrupt+0x17c/0x640 arch/x86/kernel/apic/apic.c:1113 | sysvec_apic_timer_interrupt+0x40/0xc0 arch/x86/kernel/apic/apic.c:1107 | asm_sysvec_apic_timer_interrupt+0x16/0x20 arch/x86/include/asm/idtentry.h:649 | <...> | </TASK> In this case, syzbot produced a program with event type PERF_TYPE_SOFTWARE and config PERF_COUNT_SW_CPU_CLOCK. The hrtimer manages to fire again before the IRQ work got a chance to run, all while never having returned to user space. Improve the WARN to check for real progress in user space: approximate this by storing a 32-bit hash of the current IP into pending_sigtrap, and if an event fires while pending_sigtrap still matches the previous IP, we assume no progress (false negatives are possible given we could return to user space and trigger again on the same IP). | ||||
CVE-2022-49772 | 1 Linux | 1 Linux Kernel | 2025-06-24 | 2.1 Low |
In the Linux kernel, the following vulnerability has been resolved: ALSA: usb-audio: Drop snd_BUG_ON() from snd_usbmidi_output_open() snd_usbmidi_output_open() has a check of the NULL port with snd_BUG_ON(). snd_BUG_ON() was used as this shouldn't have happened, but in reality, the NULL port may be seen when the device gives an invalid endpoint setup at the descriptor, hence the driver skips the allocation. That is, the check itself is valid and snd_BUG_ON() should be dropped from there. Otherwise it's confusing as if it were a real bug, as recently syzbot stumbled on it. | ||||
CVE-2022-49886 | 1 Linux | 1 Linux Kernel | 2025-06-24 | 7.1 High |
In the Linux kernel, the following vulnerability has been resolved: x86/tdx: Panic on bad configs that #VE on "private" memory access All normal kernel memory is "TDX private memory". This includes everything from kernel stacks to kernel text. Handling exceptions on arbitrary accesses to kernel memory is essentially impossible because they can happen in horribly nasty places like kernel entry/exit. But, TDX hardware can theoretically _deliver_ a virtualization exception (#VE) on any access to private memory. But, it's not as bad as it sounds. TDX can be configured to never deliver these exceptions on private memory with a "TD attribute" called ATTR_SEPT_VE_DISABLE. The guest has no way to *set* this attribute, but it can check it. Ensure ATTR_SEPT_VE_DISABLE is set in early boot. panic() if it is unset. There is no sane way for Linux to run with this attribute clear so a panic() is appropriate. There's small window during boot before the check where kernel has an early #VE handler. But the handler is only for port I/O and will also panic() as soon as it sees any other #VE, such as a one generated by a private memory access. [ dhansen: Rewrite changelog and rebase on new tdx_parse_tdinfo(). Add Kirill's tested-by because I made changes since he wrote this. ] | ||||
CVE-2022-49858 | 1 Linux | 1 Linux Kernel | 2025-06-24 | 4.7 Medium |
In the Linux kernel, the following vulnerability has been resolved: octeontx2-pf: Fix SQE threshold checking Current way of checking available SQE count which is based on HW updated SQB count could result in driver submitting an SQE even before CQE for the previously transmitted SQE at the same index is processed in NAPI resulting losing SKB pointers, hence a leak. Fix this by checking a consumer index which is updated once CQE is processed. |