Search Results (16558 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2022-50651 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ethtool: eeprom: fix null-deref on genl_info in dump The similar fix as commit 46cdedf2a0fa ("ethtool: pse-pd: fix null-deref on genl_info in dump") is also needed for ethtool eeprom.
CVE-2023-53837 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/msm: fix NULL-deref on snapshot tear down In case of early initialisation errors and on platforms that do not use the DPU controller, the deinitilisation code can be called with the kms pointer set to NULL. Patchwork: https://patchwork.freedesktop.org/patch/525099/
CVE-2023-53840 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: usb: early: xhci-dbc: Fix a potential out-of-bound memory access If xdbc_bulk_write() fails, the values in 'buf' can be anything. So the string is not guaranteed to be NULL terminated when xdbc_trace() is called. Reserve an extra byte, which will be zeroed automatically because 'buf' is a static variable, in order to avoid troubles, should it happen.
CVE-2022-50642 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: platform/chrome: cros_ec_typec: zero out stale pointers `cros_typec_get_switch_handles` allocates four pointers when obtaining type-c switch handles. These pointers are all freed if failing to obtain any of them; therefore, pointers in `port` become stale. The stale pointers eventually cause use-after-free or double free in later code paths. Zeroing out all pointer fields after freeing to eliminate these stale pointers.
CVE-2022-50635 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: powerpc/kprobes: Fix null pointer reference in arch_prepare_kprobe() I found a null pointer reference in arch_prepare_kprobe(): # echo 'p cmdline_proc_show' > kprobe_events # echo 'p cmdline_proc_show+16' >> kprobe_events Kernel attempted to read user page (0) - exploit attempt? (uid: 0) BUG: Kernel NULL pointer dereference on read at 0x00000000 Faulting instruction address: 0xc000000000050bfc Oops: Kernel access of bad area, sig: 11 [#1] LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=2048 NUMA PowerNV Modules linked in: CPU: 0 PID: 122 Comm: sh Not tainted 6.0.0-rc3-00007-gdcf8e5633e2e #10 NIP: c000000000050bfc LR: c000000000050bec CTR: 0000000000005bdc REGS: c0000000348475b0 TRAP: 0300 Not tainted (6.0.0-rc3-00007-gdcf8e5633e2e) MSR: 9000000000009033 <SF,HV,EE,ME,IR,DR,RI,LE> CR: 88002444 XER: 20040006 CFAR: c00000000022d100 DAR: 0000000000000000 DSISR: 40000000 IRQMASK: 0 ... NIP arch_prepare_kprobe+0x10c/0x2d0 LR arch_prepare_kprobe+0xfc/0x2d0 Call Trace: 0xc0000000012f77a0 (unreliable) register_kprobe+0x3c0/0x7a0 __register_trace_kprobe+0x140/0x1a0 __trace_kprobe_create+0x794/0x1040 trace_probe_create+0xc4/0xe0 create_or_delete_trace_kprobe+0x2c/0x80 trace_parse_run_command+0xf0/0x210 probes_write+0x20/0x40 vfs_write+0xfc/0x450 ksys_write+0x84/0x140 system_call_exception+0x17c/0x3a0 system_call_vectored_common+0xe8/0x278 --- interrupt: 3000 at 0x7fffa5682de0 NIP: 00007fffa5682de0 LR: 0000000000000000 CTR: 0000000000000000 REGS: c000000034847e80 TRAP: 3000 Not tainted (6.0.0-rc3-00007-gdcf8e5633e2e) MSR: 900000000280f033 <SF,HV,VEC,VSX,EE,PR,FP,ME,IR,DR,RI,LE> CR: 44002408 XER: 00000000 The address being probed has some special: cmdline_proc_show: Probe based on ftrace cmdline_proc_show+16: Probe for the next instruction at the ftrace location The ftrace-based kprobe does not generate kprobe::ainsn::insn, it gets set to NULL. In arch_prepare_kprobe() it will check for: ... prev = get_kprobe(p->addr - 1); preempt_enable_no_resched(); if (prev && ppc_inst_prefixed(ppc_inst_read(prev->ainsn.insn))) { ... If prev is based on ftrace, 'ppc_inst_read(prev->ainsn.insn)' will occur with a null pointer reference. At this point prev->addr will not be a prefixed instruction, so the check can be skipped. Check if prev is ftrace-based kprobe before reading 'prev->ainsn.insn' to fix this problem. [mpe: Trim oops]
CVE-2023-53839 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: dccp: fix data-race around dp->dccps_mss_cache dccp_sendmsg() reads dp->dccps_mss_cache before locking the socket. Same thing in do_dccp_getsockopt(). Add READ_ONCE()/WRITE_ONCE() annotations, and change dccp_sendmsg() to check again dccps_mss_cache after socket is locked.
CVE-2023-53844 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/ttm: Don't leak a resource on swapout move error If moving the bo to system for swapout failed, we were leaking a resource. Fix.
CVE-2023-53865 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix warning when putting transaction with qgroups enabled after abort If we have a transaction abort with qgroups enabled we get a warning triggered when doing the final put on the transaction, like this: [552.6789] ------------[ cut here ]------------ [552.6815] WARNING: CPU: 4 PID: 81745 at fs/btrfs/transaction.c:144 btrfs_put_transaction+0x123/0x130 [btrfs] [552.6817] Modules linked in: btrfs blake2b_generic xor (...) [552.6819] CPU: 4 PID: 81745 Comm: btrfs-transacti Tainted: G W 6.4.0-rc6-btrfs-next-134+ #1 [552.6819] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-0-gea1b7a073390-prebuilt.qemu.org 04/01/2014 [552.6819] RIP: 0010:btrfs_put_transaction+0x123/0x130 [btrfs] [552.6821] Code: bd a0 01 00 (...) [552.6821] RSP: 0018:ffffa168c0527e28 EFLAGS: 00010286 [552.6821] RAX: ffff936042caed00 RBX: ffff93604a3eb448 RCX: 0000000000000000 [552.6821] RDX: ffff93606421b028 RSI: ffffffff92ff0878 RDI: ffff93606421b010 [552.6821] RBP: ffff93606421b000 R08: 0000000000000000 R09: ffffa168c0d07c20 [552.6821] R10: 0000000000000000 R11: ffff93608dc52950 R12: ffffa168c0527e70 [552.6821] R13: ffff93606421b000 R14: ffff93604a3eb420 R15: ffff93606421b028 [552.6821] FS: 0000000000000000(0000) GS:ffff93675fb00000(0000) knlGS:0000000000000000 [552.6821] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [552.6821] CR2: 0000558ad262b000 CR3: 000000014feda005 CR4: 0000000000370ee0 [552.6822] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [552.6822] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [552.6822] Call Trace: [552.6822] <TASK> [552.6822] ? __warn+0x80/0x130 [552.6822] ? btrfs_put_transaction+0x123/0x130 [btrfs] [552.6824] ? report_bug+0x1f4/0x200 [552.6824] ? handle_bug+0x42/0x70 [552.6824] ? exc_invalid_op+0x14/0x70 [552.6824] ? asm_exc_invalid_op+0x16/0x20 [552.6824] ? btrfs_put_transaction+0x123/0x130 [btrfs] [552.6826] btrfs_cleanup_transaction+0xe7/0x5e0 [btrfs] [552.6828] ? _raw_spin_unlock_irqrestore+0x23/0x40 [552.6828] ? try_to_wake_up+0x94/0x5e0 [552.6828] ? __pfx_process_timeout+0x10/0x10 [552.6828] transaction_kthread+0x103/0x1d0 [btrfs] [552.6830] ? __pfx_transaction_kthread+0x10/0x10 [btrfs] [552.6832] kthread+0xee/0x120 [552.6832] ? __pfx_kthread+0x10/0x10 [552.6832] ret_from_fork+0x29/0x50 [552.6832] </TASK> [552.6832] ---[ end trace 0000000000000000 ]--- This corresponds to this line of code: void btrfs_put_transaction(struct btrfs_transaction *transaction) { (...) WARN_ON(!RB_EMPTY_ROOT( &transaction->delayed_refs.dirty_extent_root)); (...) } The warning happens because btrfs_qgroup_destroy_extent_records(), called in the transaction abort path, we free all entries from the rbtree "dirty_extent_root" with rbtree_postorder_for_each_entry_safe(), but we don't actually empty the rbtree - it's still pointing to nodes that were freed. So set the rbtree's root node to NULL to avoid this warning (assign RB_ROOT).
CVE-2022-50650 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Fix reference state management for synchronous callbacks Currently, verifier verifies callback functions (sync and async) as if they will be executed once, (i.e. it explores execution state as if the function was being called once). The next insn to explore is set to start of subprog and the exit from nested frame is handled using curframe > 0 and prepare_func_exit. In case of async callback it uses a customized variant of push_stack simulating a kind of branch to set up custom state and execution context for the async callback. While this approach is simple and works when callback really will be executed only once, it is unsafe for all of our current helpers which are for_each style, i.e. they execute the callback multiple times. A callback releasing acquired references of the caller may do so multiple times, but currently verifier sees it as one call inside the frame, which then returns to caller. Hence, it thinks it released some reference that the cb e.g. got access through callback_ctx (register filled inside cb from spilled typed register on stack). Similarly, it may see that an acquire call is unpaired inside the callback, so the caller will copy the reference state of callback and then will have to release the register with new ref_obj_ids. But again, the callback may execute multiple times, but the verifier will only account for acquired references for a single symbolic execution of the callback, which will cause leaks. Note that for async callback case, things are different. While currently we have bpf_timer_set_callback which only executes it once, even for multiple executions it would be safe, as reference state is NULL and check_reference_leak would force program to release state before BPF_EXIT. The state is also unaffected by analysis for the caller frame. Hence async callback is safe. Since we want the reference state to be accessible, e.g. for pointers loaded from stack through callback_ctx's PTR_TO_STACK, we still have to copy caller's reference_state to callback's bpf_func_state, but we enforce that whatever references it adds to that reference_state has been released before it hits BPF_EXIT. This requires introducing a new callback_ref member in the reference state to distinguish between caller vs callee references. Hence, check_reference_leak now errors out if it sees we are in callback_fn and we have not released callback_ref refs. Since there can be multiple nested callbacks, like frame 0 -> cb1 -> cb2 etc. we need to also distinguish between whether this particular ref belongs to this callback frame or parent, and only error for our own, so we store state->frameno (which is always non-zero for callbacks). In short, callbacks can read parent reference_state, but cannot mutate it, to be able to use pointers acquired by the caller. They must only undo their changes (by releasing their own acquired_refs before BPF_EXIT) on top of caller reference_state before returning (at which point the caller and callback state will match anyway, so no need to copy it back to caller).
CVE-2022-50643 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: cifs: Fix xid leak in cifs_copy_file_range() If the file is used by swap, before return -EOPNOTSUPP, should free the xid, otherwise, the xid will be leaked.
CVE-2022-50647 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: RISC-V: Make port I/O string accessors actually work Fix port I/O string accessors such as `insb', `outsb', etc. which use the physical PCI port I/O address rather than the corresponding memory mapping to get at the requested location, which in turn breaks at least accesses made by our parport driver to a PCIe parallel port such as: PCI parallel port detected: 1415:c118, I/O at 0x1000(0x1008), IRQ 20 parport0: PC-style at 0x1000 (0x1008), irq 20, using FIFO [PCSPP,TRISTATE,COMPAT,EPP,ECP] causing a memory access fault: Unable to handle kernel access to user memory without uaccess routines at virtual address 0000000000001008 Oops [#1] Modules linked in: CPU: 1 PID: 350 Comm: cat Not tainted 6.0.0-rc2-00283-g10d4879f9ef0-dirty #23 Hardware name: SiFive HiFive Unmatched A00 (DT) epc : parport_pc_fifo_write_block_pio+0x266/0x416 ra : parport_pc_fifo_write_block_pio+0xb4/0x416 epc : ffffffff80542c3e ra : ffffffff80542a8c sp : ffffffd88899fc60 gp : ffffffff80fa2700 tp : ffffffd882b1e900 t0 : ffffffd883d0b000 t1 : ffffffffff000002 t2 : 4646393043330a38 s0 : ffffffd88899fcf0 s1 : 0000000000001000 a0 : 0000000000000010 a1 : 0000000000000000 a2 : ffffffd883d0a010 a3 : 0000000000000023 a4 : 00000000ffff8fbb a5 : ffffffd883d0a001 a6 : 0000000100000000 a7 : ffffffc800000000 s2 : ffffffffff000002 s3 : ffffffff80d28880 s4 : ffffffff80fa1f50 s5 : 0000000000001008 s6 : 0000000000000008 s7 : ffffffd883d0a000 s8 : 0004000000000000 s9 : ffffffff80dc1d80 s10: ffffffd8807e4000 s11: 0000000000000000 t3 : 00000000000000ff t4 : 393044410a303930 t5 : 0000000000001000 t6 : 0000000000040000 status: 0000000200000120 badaddr: 0000000000001008 cause: 000000000000000f [<ffffffff80543212>] parport_pc_compat_write_block_pio+0xfe/0x200 [<ffffffff8053bbc0>] parport_write+0x46/0xf8 [<ffffffff8050530e>] lp_write+0x158/0x2d2 [<ffffffff80185716>] vfs_write+0x8e/0x2c2 [<ffffffff80185a74>] ksys_write+0x52/0xc2 [<ffffffff80185af2>] sys_write+0xe/0x16 [<ffffffff80003770>] ret_from_syscall+0x0/0x2 ---[ end trace 0000000000000000 ]--- For simplicity address the problem by adding PCI_IOBASE to the physical address requested in the respective wrapper macros only, observing that the raw accessors such as `__insb', `__outsb', etc. are not supposed to be used other than by said macros. Remove the cast to `long' that is no longer needed on `addr' now that it is used as an offset from PCI_IOBASE and add parentheses around `addr' needed for predictable evaluation in macro expansion. No need to make said adjustments in separate changes given that current code is gravely broken and does not ever work.
CVE-2022-50656 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nfc: pn533: Clear nfc_target before being used Fix a slab-out-of-bounds read that occurs in nla_put() called from nfc_genl_send_target() when target->sensb_res_len, which is duplicated from an nfc_target in pn533, is too large as the nfc_target is not properly initialized and retains garbage values. Clear nfc_targets with memset() before they are used. Found by a modified version of syzkaller. BUG: KASAN: slab-out-of-bounds in nla_put Call Trace: memcpy nla_put nfc_genl_dump_targets genl_lock_dumpit netlink_dump __netlink_dump_start genl_family_rcv_msg_dumpit genl_rcv_msg netlink_rcv_skb genl_rcv netlink_unicast netlink_sendmsg sock_sendmsg ____sys_sendmsg ___sys_sendmsg __sys_sendmsg do_syscall_64
CVE-2022-50677 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ipmi: fix use after free in _ipmi_destroy_user() The intf_free() function frees the "intf" pointer so we cannot dereference it again on the next line.
CVE-2022-50675 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: arm64: mte: Avoid setting PG_mte_tagged if no tags cleared or restored Prior to commit 69e3b846d8a7 ("arm64: mte: Sync tags for pages where PTE is untagged"), mte_sync_tags() was only called for pte_tagged() entries (those mapped with PROT_MTE). Therefore mte_sync_tags() could safely use test_and_set_bit(PG_mte_tagged, &page->flags) without inadvertently setting PG_mte_tagged on an untagged page. The above commit was required as guests may enable MTE without any control at the stage 2 mapping, nor a PROT_MTE mapping in the VMM. However, the side-effect was that any page with a PTE that looked like swap (or migration) was getting PG_mte_tagged set automatically. A subsequent page copy (e.g. migration) copied the tags to the destination page even if the tags were owned by KASAN. This issue was masked by the page_kasan_tag_reset() call introduced in commit e5b8d9218951 ("arm64: mte: reset the page tag in page->flags"). When this commit was reverted (20794545c146), KASAN started reporting access faults because the overriding tags in a page did not match the original page->flags (with CONFIG_KASAN_HW_TAGS=y): BUG: KASAN: invalid-access in copy_page+0x10/0xd0 arch/arm64/lib/copy_page.S:26 Read at addr f5ff000017f2e000 by task syz-executor.1/2218 Pointer tag: [f5], memory tag: [f2] Move the PG_mte_tagged bit setting from mte_sync_tags() to the actual place where tags are cleared (mte_sync_page_tags()) or restored (mte_restore_tags()).
CVE-2022-50674 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: riscv: vdso: fix NULL deference in vdso_join_timens() when vfork Testing tools/testing/selftests/timens/vfork_exec.c got below kernel log: [ 6.838454] Unable to handle kernel access to user memory without uaccess routines at virtual address 0000000000000020 [ 6.842255] Oops [#1] [ 6.842871] Modules linked in: [ 6.844249] CPU: 1 PID: 64 Comm: vfork_exec Not tainted 6.0.0-rc3-rt15+ #8 [ 6.845861] Hardware name: riscv-virtio,qemu (DT) [ 6.848009] epc : vdso_join_timens+0xd2/0x110 [ 6.850097] ra : vdso_join_timens+0xd2/0x110 [ 6.851164] epc : ffffffff8000635c ra : ffffffff8000635c sp : ff6000000181fbf0 [ 6.852562] gp : ffffffff80cff648 tp : ff60000000fdb700 t0 : 3030303030303030 [ 6.853852] t1 : 0000000000000030 t2 : 3030303030303030 s0 : ff6000000181fc40 [ 6.854984] s1 : ff60000001e6c000 a0 : 0000000000000010 a1 : ffffffff8005654c [ 6.856221] a2 : 00000000ffffefff a3 : 0000000000000000 a4 : 0000000000000000 [ 6.858114] a5 : 0000000000000000 a6 : 0000000000000008 a7 : 0000000000000038 [ 6.859484] s2 : ff60000001e6c068 s3 : ff6000000108abb0 s4 : 0000000000000000 [ 6.860751] s5 : 0000000000001000 s6 : ffffffff8089dc40 s7 : ffffffff8089dc38 [ 6.862029] s8 : ffffffff8089dc30 s9 : ff60000000fdbe38 s10: 000000000000005e [ 6.863304] s11: ffffffff80cc3510 t3 : ffffffff80d1112f t4 : ffffffff80d1112f [ 6.864565] t5 : ffffffff80d11130 t6 : ff6000000181fa00 [ 6.865561] status: 0000000000000120 badaddr: 0000000000000020 cause: 000000000000000d [ 6.868046] [<ffffffff8008dc94>] timens_commit+0x38/0x11a [ 6.869089] [<ffffffff8008dde8>] timens_on_fork+0x72/0xb4 [ 6.870055] [<ffffffff80190096>] begin_new_exec+0x3c6/0x9f0 [ 6.871231] [<ffffffff801d826c>] load_elf_binary+0x628/0x1214 [ 6.872304] [<ffffffff8018ee7a>] bprm_execve+0x1f2/0x4e4 [ 6.873243] [<ffffffff8018f90c>] do_execveat_common+0x16e/0x1ee [ 6.874258] [<ffffffff8018f9c8>] sys_execve+0x3c/0x48 [ 6.875162] [<ffffffff80003556>] ret_from_syscall+0x0/0x2 [ 6.877484] ---[ end trace 0000000000000000 ]--- This is because the mm->context.vdso_info is NULL in vfork case. From another side, mm->context.vdso_info either points to vdso info for RV64 or vdso info for compat, there's no need to bloat riscv's mm_context_t, we can handle the difference when setup the additional page for vdso.
CVE-2022-50671 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: RDMA/rxe: Fix "kernel NULL pointer dereference" error When rxe_queue_init in the function rxe_qp_init_req fails, both qp->req.task.func and qp->req.task.arg are not initialized. Because of creation of qp fails, the function rxe_create_qp will call rxe_qp_do_cleanup to handle allocated resource. Before calling __rxe_do_task, both qp->req.task.func and qp->req.task.arg should be checked.
CVE-2022-50666 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: RDMA/siw: Fix QP destroy to wait for all references dropped. Delay QP destroy completion until all siw references to QP are dropped. The calling RDMA core will free QP structure after successful return from siw_qp_destroy() call, so siw must not hold any remaining reference to the QP upon return. A use-after-free was encountered in xfstest generic/460, while testing NFSoRDMA. Here, after a TCP connection drop by peer, the triggered siw_cm_work_handler got delayed until after QP destroy call, referencing a QP which has already freed.
CVE-2022-50665 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: ath11k: fix failed to find the peer with peer_id 0 when disconnected It has a fail log which is ath11k_dbg in ath11k_dp_rx_process_mon_status(), as below, it will not print when debug_mask is not set ATH11K_DBG_DATA. ath11k_dbg(ab, ATH11K_DBG_DATA, "failed to find the peer with peer_id %d\n", ppdu_info.peer_id); When run scan with station disconnected, the peer_id is 0 for case HAL_RX_MPDU_START in ath11k_hal_rx_parse_mon_status_tlv() which called from ath11k_dp_rx_process_mon_status(), and the peer_id of ppdu_info is reset to 0 in the while loop, so it does not match condition of the check "if (ppdu_info->peer_id == HAL_INVALID_PEERID" in the loop, and then the log "failed to find the peer with peer_id 0" print after the check in the loop, it is below call stack when debug_mask is set ATH11K_DBG_DATA. The reason is this commit 01d2f285e3e5 ("ath11k: decode HE status tlv") add "memset(ppdu_info, 0, sizeof(struct hal_rx_mon_ppdu_info))" in ath11k_dp_rx_process_mon_status(), but the commit does not initialize the peer_id to HAL_INVALID_PEERID, then lead the check mis-match. Callstack of the failed log: [12335.689072] RIP: 0010:ath11k_dp_rx_process_mon_status+0x9ea/0x1020 [ath11k] [12335.689157] Code: 89 ff e8 f9 10 00 00 be 01 00 00 00 4c 89 f7 e8 dc 4b 4e de 48 8b 85 38 ff ff ff c7 80 e4 07 00 00 01 00 00 00 e9 20 f8 ff ff <0f> 0b 41 0f b7 96 be 06 00 00 48 c7 c6 b8 50 44 c1 4c 89 ff e8 fd [12335.689180] RSP: 0018:ffffb874001a4ca0 EFLAGS: 00010246 [12335.689210] RAX: 0000000000000000 RBX: ffff995642cbd100 RCX: 0000000000000000 [12335.689229] RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff99564212cd18 [12335.689248] RBP: ffffb874001a4dc0 R08: 0000000000000001 R09: 0000000000000000 [12335.689268] R10: 0000000000000220 R11: ffffb874001a48e8 R12: ffff995642473d40 [12335.689286] R13: ffff99564212c5b8 R14: ffff9956424736a0 R15: ffff995642120000 [12335.689303] FS: 0000000000000000(0000) GS:ffff995739000000(0000) knlGS:0000000000000000 [12335.689323] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [12335.689341] CR2: 00007f43c5d5e039 CR3: 000000011c012005 CR4: 00000000000606e0 [12335.689360] Call Trace: [12335.689377] <IRQ> [12335.689418] ? rcu_read_lock_held_common+0x12/0x50 [12335.689447] ? rcu_read_lock_sched_held+0x25/0x80 [12335.689471] ? rcu_read_lock_held_common+0x12/0x50 [12335.689504] ath11k_dp_rx_process_mon_rings+0x8d/0x4f0 [ath11k] [12335.689578] ? ath11k_dp_rx_process_mon_rings+0x8d/0x4f0 [ath11k] [12335.689653] ? lock_acquire+0xef/0x360 [12335.689681] ? rcu_read_lock_sched_held+0x25/0x80 [12335.689713] ath11k_dp_service_mon_ring+0x38/0x60 [ath11k] [12335.689784] ? ath11k_dp_rx_process_mon_rings+0x4f0/0x4f0 [ath11k] [12335.689860] call_timer_fn+0xb2/0x2f0 [12335.689897] ? ath11k_dp_rx_process_mon_rings+0x4f0/0x4f0 [ath11k] [12335.689970] run_timer_softirq+0x21f/0x540 [12335.689999] ? ktime_get+0xad/0x160 [12335.690025] ? lapic_next_deadline+0x2c/0x40 [12335.690053] ? clockevents_program_event+0x82/0x100 [12335.690093] __do_softirq+0x151/0x4a8 [12335.690135] irq_exit_rcu+0xc9/0x100 [12335.690165] sysvec_apic_timer_interrupt+0xa8/0xd0 [12335.690189] </IRQ> [12335.690204] <TASK> [12335.690225] asm_sysvec_apic_timer_interrupt+0x12/0x20 Reset the default value to HAL_INVALID_PEERID each time after memset of ppdu_info as well as others memset which existed in function ath11k_dp_rx_process_mon_status(), then the failed log disappeared. Tested-on: WCN6855 hw2.0 PCI WLAN.HSP.1.1-03125-QCAHSPSWPL_V1_V2_SILICONZ_LITE-3
CVE-2022-50663 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: stmmac: fix possible memory leak in stmmac_dvr_probe() The bitmap_free() should be called to free priv->af_xdp_zc_qps when create_singlethread_workqueue() fails, otherwise there will be a memory leak, so we add the err path error_wq_init to fix it.
CVE-2022-50660 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: ipw2200: fix memory leak in ipw_wdev_init() In the error path of ipw_wdev_init(), exception value is returned, and the memory applied for in the function is not released. Also the memory is not released in ipw_pci_probe(). As a result, memory leakage occurs. So memory release needs to be added to the error path of ipw_wdev_init().