| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
clk: clocking-wizard: Fix Oops in clk_wzrd_register_divider()
Smatch detected this potential error pointer dereference
clk_wzrd_register_divider(). If devm_clk_hw_register() fails then
it sets "hw" to an error pointer and then dereferences it on the
next line. Return the error directly instead. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: api - Use work queue in crypto_destroy_instance
The function crypto_drop_spawn expects to be called in process
context. However, when an instance is unregistered while it still
has active users, the last user may cause the instance to be freed
in atomic context.
Fix this by delaying the freeing to a work queue. |
| In the Linux kernel, the following vulnerability has been resolved:
iio: adc: ina2xx: avoid NULL pointer dereference on OF device match
The affected lines were resulting in a NULL pointer dereference on our
platform because the device tree contained the following list of
compatible strings:
power-sensor@40 {
compatible = "ti,ina232", "ti,ina231";
...
};
Since the driver doesn't declare a compatible string "ti,ina232", the OF
matching succeeds on "ti,ina231". But the I2C device ID info is
populated via the first compatible string, cf. modalias population in
of_i2c_get_board_info(). Since there is no "ina232" entry in the legacy
I2C device ID table either, the struct i2c_device_id *id pointer in the
probe function is NULL.
Fix this by using the already populated type variable instead, which
points to the proper driver data. Since the name is also wanted, add a
generic one to the ina2xx_config table. |
| In the Linux kernel, the following vulnerability has been resolved:
ethtool: Fix uninitialized number of lanes
It is not possible to set the number of lanes when setting link modes
using the legacy IOCTL ethtool interface. Since 'struct
ethtool_link_ksettings' is not initialized in this path, drivers receive
an uninitialized number of lanes in 'struct
ethtool_link_ksettings::lanes'.
When this information is later queried from drivers, it results in the
ethtool code making decisions based on uninitialized memory, leading to
the following KMSAN splat [1]. In practice, this most likely only
happens with the tun driver that simply returns whatever it got in the
set operation.
As far as I can tell, this uninitialized memory is not leaked to user
space thanks to the 'ethtool_ops->cap_link_lanes_supported' check in
linkmodes_prepare_data().
Fix by initializing the structure in the IOCTL path. Did not find any
more call sites that pass an uninitialized structure when calling
'ethtool_ops::set_link_ksettings()'.
[1]
BUG: KMSAN: uninit-value in ethnl_update_linkmodes net/ethtool/linkmodes.c:273 [inline]
BUG: KMSAN: uninit-value in ethnl_set_linkmodes+0x190b/0x19d0 net/ethtool/linkmodes.c:333
ethnl_update_linkmodes net/ethtool/linkmodes.c:273 [inline]
ethnl_set_linkmodes+0x190b/0x19d0 net/ethtool/linkmodes.c:333
ethnl_default_set_doit+0x88d/0xde0 net/ethtool/netlink.c:640
genl_family_rcv_msg_doit net/netlink/genetlink.c:968 [inline]
genl_family_rcv_msg net/netlink/genetlink.c:1048 [inline]
genl_rcv_msg+0x141a/0x14c0 net/netlink/genetlink.c:1065
netlink_rcv_skb+0x3f8/0x750 net/netlink/af_netlink.c:2577
genl_rcv+0x40/0x60 net/netlink/genetlink.c:1076
netlink_unicast_kernel net/netlink/af_netlink.c:1339 [inline]
netlink_unicast+0xf41/0x1270 net/netlink/af_netlink.c:1365
netlink_sendmsg+0x127d/0x1430 net/netlink/af_netlink.c:1942
sock_sendmsg_nosec net/socket.c:724 [inline]
sock_sendmsg net/socket.c:747 [inline]
____sys_sendmsg+0xa24/0xe40 net/socket.c:2501
___sys_sendmsg+0x2a1/0x3f0 net/socket.c:2555
__sys_sendmsg net/socket.c:2584 [inline]
__do_sys_sendmsg net/socket.c:2593 [inline]
__se_sys_sendmsg net/socket.c:2591 [inline]
__x64_sys_sendmsg+0x36b/0x540 net/socket.c:2591
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Uninit was stored to memory at:
tun_get_link_ksettings+0x37/0x60 drivers/net/tun.c:3544
__ethtool_get_link_ksettings+0x17b/0x260 net/ethtool/ioctl.c:441
ethnl_set_linkmodes+0xee/0x19d0 net/ethtool/linkmodes.c:327
ethnl_default_set_doit+0x88d/0xde0 net/ethtool/netlink.c:640
genl_family_rcv_msg_doit net/netlink/genetlink.c:968 [inline]
genl_family_rcv_msg net/netlink/genetlink.c:1048 [inline]
genl_rcv_msg+0x141a/0x14c0 net/netlink/genetlink.c:1065
netlink_rcv_skb+0x3f8/0x750 net/netlink/af_netlink.c:2577
genl_rcv+0x40/0x60 net/netlink/genetlink.c:1076
netlink_unicast_kernel net/netlink/af_netlink.c:1339 [inline]
netlink_unicast+0xf41/0x1270 net/netlink/af_netlink.c:1365
netlink_sendmsg+0x127d/0x1430 net/netlink/af_netlink.c:1942
sock_sendmsg_nosec net/socket.c:724 [inline]
sock_sendmsg net/socket.c:747 [inline]
____sys_sendmsg+0xa24/0xe40 net/socket.c:2501
___sys_sendmsg+0x2a1/0x3f0 net/socket.c:2555
__sys_sendmsg net/socket.c:2584 [inline]
__do_sys_sendmsg net/socket.c:2593 [inline]
__se_sys_sendmsg net/socket.c:2591 [inline]
__x64_sys_sendmsg+0x36b/0x540 net/socket.c:2591
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Uninit was stored to memory at:
tun_set_link_ksettings+0x37/0x60 drivers/net/tun.c:3553
ethtool_set_link_ksettings+0x600/0x690 net/ethtool/ioctl.c:609
__dev_ethtool net/ethtool/ioctl.c:3024 [inline]
dev_ethtool+0x1db9/0x2a70 net/ethtool/ioctl.c:3078
dev_ioctl+0xb07/0x1270 net/core/dev_ioctl.c:524
sock_do_ioctl+0x295/0x540 net/socket.c:1213
sock_i
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
kcm: Fix error handling for SOCK_DGRAM in kcm_sendmsg().
syzkaller found a memory leak in kcm_sendmsg(), and commit c821a88bd720
("kcm: Fix memory leak in error path of kcm_sendmsg()") suppressed it by
updating kcm_tx_msg(head)->last_skb if partial data is copied so that the
following sendmsg() will resume from the skb.
However, we cannot know how many bytes were copied when we get the error.
Thus, we could mess up the MSG_MORE queue.
When kcm_sendmsg() fails for SOCK_DGRAM, we should purge the queue as we
do so for UDP by udp_flush_pending_frames().
Even without this change, when the error occurred, the following sendmsg()
resumed from a wrong skb and the queue was messed up. However, we have
yet to get such a report, and only syzkaller stumbled on it. So, this
can be changed safely.
Note this does not change SOCK_SEQPACKET behaviour. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: synchronize atomic write aborts
To fix a race condition between atomic write aborts, I use the inode
lock and make COW inode to be re-usable thoroughout the whole
atomic file inode lifetime. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ipw2200: fix memory leak in ipw_wdev_init()
In the error path of ipw_wdev_init(), exception value is returned, and
the memory applied for in the function is not released. Also the memory
is not released in ipw_pci_probe(). As a result, memory leakage occurs.
So memory release needs to be added to the error path of ipw_wdev_init(). |
| In the Linux kernel, the following vulnerability has been resolved:
ftrace: Fix recursive locking direct_mutex in ftrace_modify_direct_caller
Naveen reported recursive locking of direct_mutex with sample
ftrace-direct-modify.ko:
[ 74.762406] WARNING: possible recursive locking detected
[ 74.762887] 6.0.0-rc6+ #33 Not tainted
[ 74.763216] --------------------------------------------
[ 74.763672] event-sample-fn/1084 is trying to acquire lock:
[ 74.764152] ffffffff86c9d6b0 (direct_mutex){+.+.}-{3:3}, at: \
register_ftrace_function+0x1f/0x180
[ 74.764922]
[ 74.764922] but task is already holding lock:
[ 74.765421] ffffffff86c9d6b0 (direct_mutex){+.+.}-{3:3}, at: \
modify_ftrace_direct+0x34/0x1f0
[ 74.766142]
[ 74.766142] other info that might help us debug this:
[ 74.766701] Possible unsafe locking scenario:
[ 74.766701]
[ 74.767216] CPU0
[ 74.767437] ----
[ 74.767656] lock(direct_mutex);
[ 74.767952] lock(direct_mutex);
[ 74.768245]
[ 74.768245] *** DEADLOCK ***
[ 74.768245]
[ 74.768750] May be due to missing lock nesting notation
[ 74.768750]
[ 74.769332] 1 lock held by event-sample-fn/1084:
[ 74.769731] #0: ffffffff86c9d6b0 (direct_mutex){+.+.}-{3:3}, at: \
modify_ftrace_direct+0x34/0x1f0
[ 74.770496]
[ 74.770496] stack backtrace:
[ 74.770884] CPU: 4 PID: 1084 Comm: event-sample-fn Not tainted ...
[ 74.771498] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), ...
[ 74.772474] Call Trace:
[ 74.772696] <TASK>
[ 74.772896] dump_stack_lvl+0x44/0x5b
[ 74.773223] __lock_acquire.cold.74+0xac/0x2b7
[ 74.773616] lock_acquire+0xd2/0x310
[ 74.773936] ? register_ftrace_function+0x1f/0x180
[ 74.774357] ? lock_is_held_type+0xd8/0x130
[ 74.774744] ? my_tramp2+0x11/0x11 [ftrace_direct_modify]
[ 74.775213] __mutex_lock+0x99/0x1010
[ 74.775536] ? register_ftrace_function+0x1f/0x180
[ 74.775954] ? slab_free_freelist_hook.isra.43+0x115/0x160
[ 74.776424] ? ftrace_set_hash+0x195/0x220
[ 74.776779] ? register_ftrace_function+0x1f/0x180
[ 74.777194] ? kfree+0x3e1/0x440
[ 74.777482] ? my_tramp2+0x11/0x11 [ftrace_direct_modify]
[ 74.777941] ? __schedule+0xb40/0xb40
[ 74.778258] ? register_ftrace_function+0x1f/0x180
[ 74.778672] ? my_tramp1+0xf/0xf [ftrace_direct_modify]
[ 74.779128] register_ftrace_function+0x1f/0x180
[ 74.779527] ? ftrace_set_filter_ip+0x33/0x70
[ 74.779910] ? __schedule+0xb40/0xb40
[ 74.780231] ? my_tramp1+0xf/0xf [ftrace_direct_modify]
[ 74.780678] ? my_tramp2+0x11/0x11 [ftrace_direct_modify]
[ 74.781147] ftrace_modify_direct_caller+0x5b/0x90
[ 74.781563] ? 0xffffffffa0201000
[ 74.781859] ? my_tramp1+0xf/0xf [ftrace_direct_modify]
[ 74.782309] modify_ftrace_direct+0x1b2/0x1f0
[ 74.782690] ? __schedule+0xb40/0xb40
[ 74.783014] ? simple_thread+0x2a/0xb0 [ftrace_direct_modify]
[ 74.783508] ? __schedule+0xb40/0xb40
[ 74.783832] ? my_tramp2+0x11/0x11 [ftrace_direct_modify]
[ 74.784294] simple_thread+0x76/0xb0 [ftrace_direct_modify]
[ 74.784766] kthread+0xf5/0x120
[ 74.785052] ? kthread_complete_and_exit+0x20/0x20
[ 74.785464] ret_from_fork+0x22/0x30
[ 74.785781] </TASK>
Fix this by using register_ftrace_function_nolock in
ftrace_modify_direct_caller. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: hpsa: Fix possible memory leak in hpsa_init_one()
The hpda_alloc_ctlr_info() allocates h and its field reply_map. However, in
hpsa_init_one(), if alloc_percpu() failed, the hpsa_init_one() jumps to
clean1 directly, which frees h and leaks the h->reply_map.
Fix by calling hpda_free_ctlr_info() to release h->replay_map and h instead
free h directly. |
| In the Linux kernel, the following vulnerability has been resolved:
EDAC/i10nm: fix refcount leak in pci_get_dev_wrapper()
As the comment of pci_get_domain_bus_and_slot() says, it returns
a PCI device with refcount incremented, so it doesn't need to
call an extra pci_dev_get() in pci_get_dev_wrapper(), and the PCI
device needs to be put in the error path. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: ti: dra7-atl: Fix reference leak in of_dra7_atl_clk_probe
pm_runtime_get_sync() will increment pm usage counter.
Forgetting to putting operation will result in reference leak.
Add missing pm_runtime_put_sync in some error paths. |
| In the Linux kernel, the following vulnerability has been resolved:
HSI: omap_ssi: Fix refcount leak in ssi_probe
When returning or breaking early from a
for_each_available_child_of_node() loop, we need to explicitly call
of_node_put() on the child node to possibly release the node. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915: Fix NULL ptr deref by checking new_crtc_state
intel_atomic_get_new_crtc_state can return NULL, unless crtc state wasn't
obtained previously with intel_atomic_get_crtc_state, so we must check it
for NULLness here, just as in many other places, where we can't guarantee
that intel_atomic_get_crtc_state was called.
We are currently getting NULL ptr deref because of that, so this fix was
confirmed to help.
(cherry picked from commit 1d5b09f8daf859247a1ea65b0d732a24d88980d8) |
| In the Linux kernel, the following vulnerability has been resolved:
io-wq: Fix memory leak in worker creation
If the CPU mask allocation for a node fails, then the memory allocated for
the 'io_wqe' struct of the current node doesn't get freed on the error
handling path, since it has not yet been added to the 'wqes' array.
This was spotted when fuzzing v6.1-rc1 with Syzkaller:
BUG: memory leak
unreferenced object 0xffff8880093d5000 (size 1024):
comm "syz-executor.2", pid 7701, jiffies 4295048595 (age 13.900s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<00000000cb463369>] __kmem_cache_alloc_node+0x18e/0x720
[<00000000147a3f9c>] kmalloc_node_trace+0x2a/0x130
[<000000004e107011>] io_wq_create+0x7b9/0xdc0
[<00000000c38b2018>] io_uring_alloc_task_context+0x31e/0x59d
[<00000000867399da>] __io_uring_add_tctx_node.cold+0x19/0x1ba
[<000000007e0e7a79>] io_uring_setup.cold+0x1b80/0x1dce
[<00000000b545e9f6>] __x64_sys_io_uring_setup+0x5d/0x80
[<000000008a8a7508>] do_syscall_64+0x5d/0x90
[<000000004ac08bec>] entry_SYSCALL_64_after_hwframe+0x63/0xcd |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: codecs: wcd-mbhc-v2: fix resource leaks on component remove
The MBHC resources must be released on component probe failure and
removal so can not be tied to the lifetime of the component device.
This is specifically needed to allow probe deferrals of the sound card
which otherwise fails when reprobing the codec component:
snd-sc8280xp sound: ASoC: failed to instantiate card -517
genirq: Flags mismatch irq 299. 00002001 (mbhc sw intr) vs. 00002001 (mbhc sw intr)
wcd938x_codec audio-codec: Failed to request mbhc interrupts -16
wcd938x_codec audio-codec: mbhc initialization failed
wcd938x_codec audio-codec: ASoC: error at snd_soc_component_probe on audio-codec: -16
snd-sc8280xp sound: ASoC: failed to instantiate card -16 |
| In the Linux kernel, the following vulnerability has been resolved:
net: openvswitch: reject negative ifindex
Recent changes in net-next (commit 759ab1edb56c ("net: store netdevs
in an xarray")) refactored the handling of pre-assigned ifindexes
and let syzbot surface a latent problem in ovs. ovs does not validate
ifindex, making it possible to create netdev ports with negative
ifindex values. It's easy to repro with YNL:
$ ./cli.py --spec netlink/specs/ovs_datapath.yaml \
--do new \
--json '{"upcall-pid": 1, "name":"my-dp"}'
$ ./cli.py --spec netlink/specs/ovs_vport.yaml \
--do new \
--json '{"upcall-pid": "00000001", "name": "some-port0", "dp-ifindex":3,"ifindex":4294901760,"type":2}'
$ ip link show
-65536: some-port0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT group default qlen 1000
link/ether 7a:48:21:ad:0b:fb brd ff:ff:ff:ff:ff:ff
...
Validate the inputs. Now the second command correctly returns:
$ ./cli.py --spec netlink/specs/ovs_vport.yaml \
--do new \
--json '{"upcall-pid": "00000001", "name": "some-port0", "dp-ifindex":3,"ifindex":4294901760,"type":2}'
lib.ynl.NlError: Netlink error: Numerical result out of range
nl_len = 108 (92) nl_flags = 0x300 nl_type = 2
error: -34 extack: {'msg': 'integer out of range', 'unknown': [[type:4 len:36] b'\x0c\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0c\x00\x03\x00\xff\xff\xff\x7f\x00\x00\x00\x00\x08\x00\x01\x00\x08\x00\x00\x00'], 'bad-attr': '.ifindex'}
Accept 0 since it used to be silently ignored. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/vmwgfx: Fix memory leak in vmw_mksstat_add_ioctl()
If the copy of the description string from userspace fails, then the page
for the instance descriptor doesn't get freed before returning -EFAULT,
which leads to a memleak. |
| In the Linux kernel, the following vulnerability has been resolved:
net: stmmac: fix possible memory leak in stmmac_dvr_probe()
The bitmap_free() should be called to free priv->af_xdp_zc_qps
when create_singlethread_workqueue() fails, otherwise there will
be a memory leak, so we add the err path error_wq_init to fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: fix failed to find the peer with peer_id 0 when disconnected
It has a fail log which is ath11k_dbg in ath11k_dp_rx_process_mon_status(),
as below, it will not print when debug_mask is not set ATH11K_DBG_DATA.
ath11k_dbg(ab, ATH11K_DBG_DATA,
"failed to find the peer with peer_id %d\n",
ppdu_info.peer_id);
When run scan with station disconnected, the peer_id is 0 for case
HAL_RX_MPDU_START in ath11k_hal_rx_parse_mon_status_tlv() which called
from ath11k_dp_rx_process_mon_status(), and the peer_id of ppdu_info is
reset to 0 in the while loop, so it does not match condition of the
check "if (ppdu_info->peer_id == HAL_INVALID_PEERID" in the loop, and
then the log "failed to find the peer with peer_id 0" print after the
check in the loop, it is below call stack when debug_mask is set
ATH11K_DBG_DATA.
The reason is this commit 01d2f285e3e5 ("ath11k: decode HE status tlv")
add "memset(ppdu_info, 0, sizeof(struct hal_rx_mon_ppdu_info))" in
ath11k_dp_rx_process_mon_status(), but the commit does not initialize
the peer_id to HAL_INVALID_PEERID, then lead the check mis-match.
Callstack of the failed log:
[12335.689072] RIP: 0010:ath11k_dp_rx_process_mon_status+0x9ea/0x1020 [ath11k]
[12335.689157] Code: 89 ff e8 f9 10 00 00 be 01 00 00 00 4c 89 f7 e8 dc 4b 4e de 48 8b 85 38 ff ff ff c7 80 e4 07 00 00 01 00 00 00 e9 20 f8 ff ff <0f> 0b 41 0f b7 96 be 06 00 00 48 c7 c6 b8 50 44 c1 4c 89 ff e8 fd
[12335.689180] RSP: 0018:ffffb874001a4ca0 EFLAGS: 00010246
[12335.689210] RAX: 0000000000000000 RBX: ffff995642cbd100 RCX: 0000000000000000
[12335.689229] RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff99564212cd18
[12335.689248] RBP: ffffb874001a4dc0 R08: 0000000000000001 R09: 0000000000000000
[12335.689268] R10: 0000000000000220 R11: ffffb874001a48e8 R12: ffff995642473d40
[12335.689286] R13: ffff99564212c5b8 R14: ffff9956424736a0 R15: ffff995642120000
[12335.689303] FS: 0000000000000000(0000) GS:ffff995739000000(0000) knlGS:0000000000000000
[12335.689323] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[12335.689341] CR2: 00007f43c5d5e039 CR3: 000000011c012005 CR4: 00000000000606e0
[12335.689360] Call Trace:
[12335.689377] <IRQ>
[12335.689418] ? rcu_read_lock_held_common+0x12/0x50
[12335.689447] ? rcu_read_lock_sched_held+0x25/0x80
[12335.689471] ? rcu_read_lock_held_common+0x12/0x50
[12335.689504] ath11k_dp_rx_process_mon_rings+0x8d/0x4f0 [ath11k]
[12335.689578] ? ath11k_dp_rx_process_mon_rings+0x8d/0x4f0 [ath11k]
[12335.689653] ? lock_acquire+0xef/0x360
[12335.689681] ? rcu_read_lock_sched_held+0x25/0x80
[12335.689713] ath11k_dp_service_mon_ring+0x38/0x60 [ath11k]
[12335.689784] ? ath11k_dp_rx_process_mon_rings+0x4f0/0x4f0 [ath11k]
[12335.689860] call_timer_fn+0xb2/0x2f0
[12335.689897] ? ath11k_dp_rx_process_mon_rings+0x4f0/0x4f0 [ath11k]
[12335.689970] run_timer_softirq+0x21f/0x540
[12335.689999] ? ktime_get+0xad/0x160
[12335.690025] ? lapic_next_deadline+0x2c/0x40
[12335.690053] ? clockevents_program_event+0x82/0x100
[12335.690093] __do_softirq+0x151/0x4a8
[12335.690135] irq_exit_rcu+0xc9/0x100
[12335.690165] sysvec_apic_timer_interrupt+0xa8/0xd0
[12335.690189] </IRQ>
[12335.690204] <TASK>
[12335.690225] asm_sysvec_apic_timer_interrupt+0x12/0x20
Reset the default value to HAL_INVALID_PEERID each time after memset
of ppdu_info as well as others memset which existed in function
ath11k_dp_rx_process_mon_status(), then the failed log disappeared.
Tested-on: WCN6855 hw2.0 PCI WLAN.HSP.1.1-03125-QCAHSPSWPL_V1_V2_SILICONZ_LITE-3 |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix information leak in f2fs_move_inline_dirents()
When converting an inline directory to a regular one, f2fs is leaking
uninitialized memory to disk because it doesn't initialize the entire
directory block. Fix this by zero-initializing the block.
This bug was introduced by commit 4ec17d688d74 ("f2fs: avoid unneeded
initializing when converting inline dentry"), which didn't consider the
security implications of leaking uninitialized memory to disk.
This was found by running xfstest generic/435 on a KMSAN-enabled kernel. |