Search

Search Results (324282 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2022-50748 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: ipc: mqueue: fix possible memory leak in init_mqueue_fs() commit db7cfc380900 ("ipc: Free mq_sysctls if ipc namespace creation failed") Here's a similar memory leak to the one fixed by the patch above. retire_mq_sysctls need to be called when init_mqueue_fs fails after setup_mq_sysctls.
CVE-2022-50747 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: hfs: Fix OOB Write in hfs_asc2mac Syzbot reported a OOB Write bug: loop0: detected capacity change from 0 to 64 ================================================================== BUG: KASAN: slab-out-of-bounds in hfs_asc2mac+0x467/0x9a0 fs/hfs/trans.c:133 Write of size 1 at addr ffff88801848314e by task syz-executor391/3632 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x1b1/0x28e lib/dump_stack.c:106 print_address_description+0x74/0x340 mm/kasan/report.c:284 print_report+0x107/0x1f0 mm/kasan/report.c:395 kasan_report+0xcd/0x100 mm/kasan/report.c:495 hfs_asc2mac+0x467/0x9a0 fs/hfs/trans.c:133 hfs_cat_build_key+0x92/0x170 fs/hfs/catalog.c:28 hfs_lookup+0x1ab/0x2c0 fs/hfs/dir.c:31 lookup_open fs/namei.c:3391 [inline] open_last_lookups fs/namei.c:3481 [inline] path_openat+0x10e6/0x2df0 fs/namei.c:3710 do_filp_open+0x264/0x4f0 fs/namei.c:3740 If in->len is much larger than HFS_NAMELEN(31) which is the maximum length of an HFS filename, a OOB write could occur in hfs_asc2mac(). In that case, when the dst reaches the boundary, the srclen is still greater than 0, which causes a OOB write. Fix this by adding a check on dstlen in while() before writing to dst address.
CVE-2022-50746 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: erofs: validate the extent length for uncompressed pclusters syzkaller reported a KASAN use-after-free: https://syzkaller.appspot.com/bug?extid=2ae90e873e97f1faf6f2 The referenced fuzzed image actually has two issues: - m_pa == 0 as a non-inlined pcluster; - The logical length is longer than its physical length. The first issue has already been addressed. This patch addresses the second issue by checking the extent length validity.
CVE-2022-50745 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: staging: media: tegra-video: fix device_node use after free At probe time this code path is followed: * tegra_csi_init * tegra_csi_channels_alloc * for_each_child_of_node(node, channel) -- iterates over channels * automatically gets 'channel' * tegra_csi_channel_alloc() * saves into chan->of_node a pointer to the channel OF node * automatically gets and puts 'channel' * now the node saved in chan->of_node has refcount 0, can disappear * tegra_csi_channels_init * iterates over channels * tegra_csi_channel_init -- uses chan->of_node After that, chan->of_node keeps storing the node until the device is removed. of_node_get() the node and of_node_put() it during teardown to avoid any risk.
CVE-2022-50744 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Fix hard lockup when reading the rx_monitor from debugfs During I/O and simultaneous cat of /sys/kernel/debug/lpfc/fnX/rx_monitor, a hard lockup similar to the call trace below may occur. The spin_lock_bh in lpfc_rx_monitor_report is not protecting from timer interrupts as expected, so change the strength of the spin lock to _irq. Kernel panic - not syncing: Hard LOCKUP CPU: 3 PID: 110402 Comm: cat Kdump: loaded exception RIP: native_queued_spin_lock_slowpath+91 [IRQ stack] native_queued_spin_lock_slowpath at ffffffffb814e30b _raw_spin_lock at ffffffffb89a667a lpfc_rx_monitor_record at ffffffffc0a73a36 [lpfc] lpfc_cmf_timer at ffffffffc0abbc67 [lpfc] __hrtimer_run_queues at ffffffffb8184250 hrtimer_interrupt at ffffffffb8184ab0 smp_apic_timer_interrupt at ffffffffb8a026ba apic_timer_interrupt at ffffffffb8a01c4f [End of IRQ stack] apic_timer_interrupt at ffffffffb8a01c4f lpfc_rx_monitor_report at ffffffffc0a73c80 [lpfc] lpfc_rx_monitor_read at ffffffffc0addde1 [lpfc] full_proxy_read at ffffffffb83e7fc3 vfs_read at ffffffffb833fe71 ksys_read at ffffffffb83402af do_syscall_64 at ffffffffb800430b entry_SYSCALL_64_after_hwframe at ffffffffb8a000ad
CVE-2022-50743 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: erofs: Fix pcluster memleak when its block address is zero syzkaller reported a memleak: https://syzkaller.appspot.com/bug?id=62f37ff612f0021641eda5b17f056f1668aa9aed unreferenced object 0xffff88811009c7f8 (size 136): ... backtrace: [<ffffffff821db19b>] z_erofs_do_read_page+0x99b/0x1740 [<ffffffff821dee9e>] z_erofs_readahead+0x24e/0x580 [<ffffffff814bc0d6>] read_pages+0x86/0x3d0 ... syzkaller constructed a case: in z_erofs_register_pcluster(), ztailpacking = false and map->m_pa = zero. This makes pcl->obj.index be zero although pcl is not a inline pcluster. Then following path adds refcount for grp, but the refcount won't be put because pcl is inline. z_erofs_readahead() z_erofs_do_read_page() # for another page z_erofs_collector_begin() erofs_find_workgroup() erofs_workgroup_get() Since it's illegal for the block address of a non-inlined pcluster to be zero, add check here to avoid registering the pcluster which would be leaked.
CVE-2022-50742 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: misc: ocxl: fix possible refcount leak in afu_ioctl() eventfd_ctx_put need to be called to put the refcount that gotten by eventfd_ctx_fdget when ocxl_irq_set_handler fails.
CVE-2022-50741 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: media: imx-jpeg: Disable useless interrupt to avoid kernel panic There is a hardware bug that the interrupt STMBUF_HALF may be triggered after or when disable interrupt. It may led to unexpected kernel panic. And interrupt STMBUF_HALF and STMBUF_RTND have no other effect. So disable them and the unused interrupts. meanwhile clear the interrupt status when disable interrupt.
CVE-2022-50740 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: wifi: ath9k: hif_usb: fix memory leak of urbs in ath9k_hif_usb_dealloc_tx_urbs() Syzkaller reports a long-known leak of urbs in ath9k_hif_usb_dealloc_tx_urbs(). The cause of the leak is that usb_get_urb() is called but usb_free_urb() (or usb_put_urb()) is not called inside usb_kill_urb() as urb->dev or urb->ep fields have not been initialized and usb_kill_urb() returns immediately. The patch removes trying to kill urbs located in hif_dev->tx.tx_buf because hif_dev->tx.tx_buf is not supposed to contain urbs which are in pending state (the pending urbs are stored in hif_dev->tx.tx_pending). The tx.tx_lock is acquired so there should not be any changes in the list. Found by Linux Verification Center (linuxtesting.org) with Syzkaller.
CVE-2022-50739 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: fs/ntfs3: Add null pointer check for inode operations This adds a sanity check for the i_op pointer of the inode which is returned after reading Root directory MFT record. We should check the i_op is valid before trying to create the root dentry, otherwise we may encounter a NPD while mounting a image with a funny Root directory MFT record. [ 114.484325] BUG: kernel NULL pointer dereference, address: 0000000000000008 [ 114.484811] #PF: supervisor read access in kernel mode [ 114.485084] #PF: error_code(0x0000) - not-present page [ 114.485606] PGD 0 P4D 0 [ 114.485975] Oops: 0000 [#1] PREEMPT SMP KASAN NOPTI [ 114.486570] CPU: 0 PID: 237 Comm: mount Tainted: G B 6.0.0-rc4 #28 [ 114.486977] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 [ 114.488169] RIP: 0010:d_flags_for_inode+0xe0/0x110 [ 114.488816] Code: 24 f7 ff 49 83 3e 00 74 41 41 83 cd 02 66 44 89 6b 02 eb 92 48 8d 7b 20 e8 6d 24 f7 ff 4c 8b 73 20 49 8d 7e 08 e8 60 241 [ 114.490326] RSP: 0018:ffff8880065e7aa8 EFLAGS: 00000296 [ 114.490695] RAX: 0000000000000001 RBX: ffff888008ccd750 RCX: ffffffff84af2aea [ 114.490986] RDX: 0000000000000001 RSI: 0000000000000008 RDI: ffffffff87abd020 [ 114.491364] RBP: ffff8880065e7ac8 R08: 0000000000000001 R09: fffffbfff0f57a05 [ 114.491675] R10: ffffffff87abd027 R11: fffffbfff0f57a04 R12: 0000000000000000 [ 114.491954] R13: 0000000000000008 R14: 0000000000000000 R15: ffff888008ccd750 [ 114.492397] FS: 00007fdc8a627e40(0000) GS:ffff888058200000(0000) knlGS:0000000000000000 [ 114.492797] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 114.493150] CR2: 0000000000000008 CR3: 00000000013ba000 CR4: 00000000000006f0 [ 114.493671] Call Trace: [ 114.493890] <TASK> [ 114.494075] __d_instantiate+0x24/0x1c0 [ 114.494505] d_instantiate.part.0+0x35/0x50 [ 114.494754] d_make_root+0x53/0x80 [ 114.494998] ntfs_fill_super+0x1232/0x1b50 [ 114.495260] ? put_ntfs+0x1d0/0x1d0 [ 114.495499] ? vsprintf+0x20/0x20 [ 114.495723] ? set_blocksize+0x95/0x150 [ 114.495964] get_tree_bdev+0x232/0x370 [ 114.496272] ? put_ntfs+0x1d0/0x1d0 [ 114.496502] ntfs_fs_get_tree+0x15/0x20 [ 114.496859] vfs_get_tree+0x4c/0x130 [ 114.497099] path_mount+0x654/0xfe0 [ 114.497507] ? putname+0x80/0xa0 [ 114.497933] ? finish_automount+0x2e0/0x2e0 [ 114.498362] ? putname+0x80/0xa0 [ 114.498571] ? kmem_cache_free+0x1c4/0x440 [ 114.498819] ? putname+0x80/0xa0 [ 114.499069] do_mount+0xd6/0xf0 [ 114.499343] ? path_mount+0xfe0/0xfe0 [ 114.499683] ? __kasan_check_write+0x14/0x20 [ 114.500133] __x64_sys_mount+0xca/0x110 [ 114.500592] do_syscall_64+0x3b/0x90 [ 114.500930] entry_SYSCALL_64_after_hwframe+0x63/0xcd [ 114.501294] RIP: 0033:0x7fdc898e948a [ 114.501542] Code: 48 8b 0d 11 fa 2a 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 49 89 ca b8 a5 00 00 008 [ 114.502716] RSP: 002b:00007ffd793e58f8 EFLAGS: 00000202 ORIG_RAX: 00000000000000a5 [ 114.503175] RAX: ffffffffffffffda RBX: 0000564b2228f060 RCX: 00007fdc898e948a [ 114.503588] RDX: 0000564b2228f260 RSI: 0000564b2228f2e0 RDI: 0000564b22297ce0 [ 114.504925] RBP: 0000000000000000 R08: 0000564b2228f280 R09: 0000000000000020 [ 114.505484] R10: 00000000c0ed0000 R11: 0000000000000202 R12: 0000564b22297ce0 [ 114.505823] R13: 0000564b2228f260 R14: 0000000000000000 R15: 00000000ffffffff [ 114.506562] </TASK> [ 114.506887] Modules linked in: [ 114.507648] CR2: 0000000000000008 [ 114.508884] ---[ end trace 0000000000000000 ]--- [ 114.509675] RIP: 0010:d_flags_for_inode+0xe0/0x110 [ 114.510140] Code: 24 f7 ff 49 83 3e 00 74 41 41 83 cd 02 66 44 89 6b 02 eb 92 48 8d 7b 20 e8 6d 24 f7 ff 4c 8b 73 20 49 8d 7e 08 e8 60 241 [ 114.511762] RSP: 0018:ffff8880065e7aa8 EFLAGS: 00000296 [ 114.512401] RAX: 0000000000000001 RBX: ffff888008ccd750 RCX: ffffffff84af2aea [ 114.51 ---truncated---
CVE-2022-50738 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: vhost-vdpa: fix an iotlb memory leak Before commit 3d5698793897 ("vhost-vdpa: introduce asid based IOTLB") we called vhost_vdpa_iotlb_unmap(v, iotlb, 0ULL, 0ULL - 1) during release to free all the resources allocated when processing user IOTLB messages through vhost_vdpa_process_iotlb_update(). That commit changed the handling of IOTLB a bit, and we accidentally removed some code called during the release. We partially fixed this with commit 037d4305569a ("vhost-vdpa: call vhost_vdpa_cleanup during the release") but a potential memory leak is still there as showed by kmemleak if the application does not send VHOST_IOTLB_INVALIDATE or crashes: unreferenced object 0xffff888007fbaa30 (size 16): comm "blkio-bench", pid 914, jiffies 4294993521 (age 885.500s) hex dump (first 16 bytes): 40 73 41 07 80 88 ff ff 00 00 00 00 00 00 00 00 @sA............. backtrace: [<0000000087736d2a>] kmem_cache_alloc_trace+0x142/0x1c0 [<0000000060740f50>] vhost_vdpa_process_iotlb_msg+0x68c/0x901 [vhost_vdpa] [<0000000083e8e205>] vhost_chr_write_iter+0xc0/0x4a0 [vhost] [<000000008f2f414a>] vhost_vdpa_chr_write_iter+0x18/0x20 [vhost_vdpa] [<00000000de1cd4a0>] vfs_write+0x216/0x4b0 [<00000000a2850200>] ksys_write+0x71/0xf0 [<00000000de8e720b>] __x64_sys_write+0x19/0x20 [<0000000018b12cbb>] do_syscall_64+0x3f/0x90 [<00000000986ec465>] entry_SYSCALL_64_after_hwframe+0x63/0xcd Let's fix this calling vhost_vdpa_iotlb_unmap() on the whole range in vhost_vdpa_remove_as(). We move that call before vhost_dev_cleanup() since we need a valid v->vdev.mm in vhost_vdpa_pa_unmap(). vhost_iotlb_reset() call can be removed, since vhost_vdpa_iotlb_unmap() on the whole range removes all the entries. The kmemleak log reported was observed with a vDPA device that has `use_va` set to true (e.g. VDUSE). This patch has been tested with both types of devices.
CVE-2022-50737 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: fs/ntfs3: Validate index root when initialize NTFS security This enhances the sanity check for $SDH and $SII while initializing NTFS security, guarantees these index root are legit. [ 162.459513] BUG: KASAN: use-after-free in hdr_find_e.isra.0+0x10c/0x320 [ 162.460176] Read of size 2 at addr ffff8880037bca99 by task mount/243 [ 162.460851] [ 162.461252] CPU: 0 PID: 243 Comm: mount Not tainted 6.0.0-rc7 #42 [ 162.461744] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 [ 162.462609] Call Trace: [ 162.462954] <TASK> [ 162.463276] dump_stack_lvl+0x49/0x63 [ 162.463822] print_report.cold+0xf5/0x689 [ 162.464608] ? unwind_get_return_address+0x3a/0x60 [ 162.465766] ? hdr_find_e.isra.0+0x10c/0x320 [ 162.466975] kasan_report+0xa7/0x130 [ 162.467506] ? _raw_spin_lock_irq+0xc0/0xf0 [ 162.467998] ? hdr_find_e.isra.0+0x10c/0x320 [ 162.468536] __asan_load2+0x68/0x90 [ 162.468923] hdr_find_e.isra.0+0x10c/0x320 [ 162.469282] ? cmp_uints+0xe0/0xe0 [ 162.469557] ? cmp_sdh+0x90/0x90 [ 162.469864] ? ni_find_attr+0x214/0x300 [ 162.470217] ? ni_load_mi+0x80/0x80 [ 162.470479] ? entry_SYSCALL_64_after_hwframe+0x63/0xcd [ 162.470931] ? ntfs_bread_run+0x190/0x190 [ 162.471307] ? indx_get_root+0xe4/0x190 [ 162.471556] ? indx_get_root+0x140/0x190 [ 162.471833] ? indx_init+0x1e0/0x1e0 [ 162.472069] ? fnd_clear+0x115/0x140 [ 162.472363] ? _raw_spin_lock_irqsave+0x100/0x100 [ 162.472731] indx_find+0x184/0x470 [ 162.473461] ? sysvec_apic_timer_interrupt+0x57/0xc0 [ 162.474429] ? indx_find_buffer+0x2d0/0x2d0 [ 162.474704] ? do_syscall_64+0x3b/0x90 [ 162.474962] dir_search_u+0x196/0x2f0 [ 162.475381] ? ntfs_nls_to_utf16+0x450/0x450 [ 162.475661] ? ntfs_security_init+0x3d6/0x440 [ 162.475906] ? is_sd_valid+0x180/0x180 [ 162.476191] ntfs_extend_init+0x13f/0x2c0 [ 162.476496] ? ntfs_fix_post_read+0x130/0x130 [ 162.476861] ? iput.part.0+0x286/0x320 [ 162.477325] ntfs_fill_super+0x11e0/0x1b50 [ 162.477709] ? put_ntfs+0x1d0/0x1d0 [ 162.477970] ? vsprintf+0x20/0x20 [ 162.478258] ? set_blocksize+0x95/0x150 [ 162.478538] get_tree_bdev+0x232/0x370 [ 162.478789] ? put_ntfs+0x1d0/0x1d0 [ 162.479038] ntfs_fs_get_tree+0x15/0x20 [ 162.479374] vfs_get_tree+0x4c/0x130 [ 162.479729] path_mount+0x654/0xfe0 [ 162.480124] ? putname+0x80/0xa0 [ 162.480484] ? finish_automount+0x2e0/0x2e0 [ 162.480894] ? putname+0x80/0xa0 [ 162.481467] ? kmem_cache_free+0x1c4/0x440 [ 162.482280] ? putname+0x80/0xa0 [ 162.482714] do_mount+0xd6/0xf0 [ 162.483264] ? path_mount+0xfe0/0xfe0 [ 162.484782] ? __kasan_check_write+0x14/0x20 [ 162.485593] __x64_sys_mount+0xca/0x110 [ 162.486024] do_syscall_64+0x3b/0x90 [ 162.486543] entry_SYSCALL_64_after_hwframe+0x63/0xcd [ 162.487141] RIP: 0033:0x7f9d374e948a [ 162.488324] Code: 48 8b 0d 11 fa 2a 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 49 89 ca b8 a5 00 00 008 [ 162.489728] RSP: 002b:00007ffe30e73d18 EFLAGS: 00000206 ORIG_RAX: 00000000000000a5 [ 162.490971] RAX: ffffffffffffffda RBX: 0000561cdb43a060 RCX: 00007f9d374e948a [ 162.491669] RDX: 0000561cdb43a260 RSI: 0000561cdb43a2e0 RDI: 0000561cdb442af0 [ 162.492050] RBP: 0000000000000000 R08: 0000561cdb43a280 R09: 0000000000000020 [ 162.492459] R10: 00000000c0ed0000 R11: 0000000000000206 R12: 0000561cdb442af0 [ 162.493183] R13: 0000561cdb43a260 R14: 0000000000000000 R15: 00000000ffffffff [ 162.493644] </TASK> [ 162.493908] [ 162.494214] The buggy address belongs to the physical page: [ 162.494761] page:000000003e38a3d5 refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x37bc [ 162.496064] flags: 0xfffffc0000000(node=0|zone=1|lastcpupid=0x1fffff) [ 162.497278] raw: 000fffffc0000000 ffffea00000df1c8 ffffea00000df008 0000000000000000 [ 162.498928] raw: 0000000000000000 0000000000240000 0 ---truncated---
CVE-2022-50736 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: RDMA/siw: Fix immediate work request flush to completion queue Correctly set send queue element opcode during immediate work request flushing in post sendqueue operation, if the QP is in ERROR state. An undefined ocode value results in out-of-bounds access to an array for mapping the opcode between siw internal and RDMA core representation in work completion generation. It resulted in a KASAN BUG report of type 'global-out-of-bounds' during NFSoRDMA testing. This patch further fixes a potential case of a malicious user which may write undefined values for completion queue elements status or opcode, if the CQ is memory mapped to user land. It avoids the same out-of-bounds access to arrays for status and opcode mapping as described above.
CVE-2022-50735 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: do not run mt76u_status_worker if the device is not running Fix the following NULL pointer dereference avoiding to run mt76u_status_worker thread if the device is not running yet. KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007] CPU: 0 PID: 98 Comm: kworker/u2:2 Not tainted 5.14.0+ #78 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.org 04/01/2014 Workqueue: mt76 mt76u_tx_status_data RIP: 0010:mt76x02_mac_fill_tx_status.isra.0+0x82c/0x9e0 Code: c5 48 b8 00 00 00 00 00 fc ff df 80 3c 02 00 0f 85 94 01 00 00 48 b8 00 00 00 00 00 fc ff df 4d 8b 34 24 4c 89 f2 48 c1 ea 03 <0f> b6 04 02 84 c0 74 08 3c 03 0f 8e 89 01 00 00 41 8b 16 41 0f b7 RSP: 0018:ffffc900005af988 EFLAGS: 00010246 RAX: dffffc0000000000 RBX: ffffc900005afae8 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffffffff832fc661 RDI: ffffc900005afc2a RBP: ffffc900005afae0 R08: 0000000000000001 R09: fffff520000b5f3c R10: 0000000000000003 R11: fffff520000b5f3b R12: ffff88810b6132d8 R13: 000000000000ffff R14: 0000000000000000 R15: ffffc900005afc28 FS: 0000000000000000(0000) GS:ffff88811aa00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fa0eda6a000 CR3: 0000000118f17000 CR4: 0000000000750ef0 PKRU: 55555554 Call Trace: mt76x02_send_tx_status+0x1d2/0xeb0 mt76x02_tx_status_data+0x8e/0xd0 mt76u_tx_status_data+0xe1/0x240 process_one_work+0x92b/0x1460 worker_thread+0x95/0xe00 kthread+0x3a1/0x480 ret_from_fork+0x1f/0x30 Modules linked in: --[ end trace 8df5d20fc5040f65 ]-- RIP: 0010:mt76x02_mac_fill_tx_status.isra.0+0x82c/0x9e0 Code: c5 48 b8 00 00 00 00 00 fc ff df 80 3c 02 00 0f 85 94 01 00 00 48 b8 00 00 00 00 00 fc ff df 4d 8b 34 24 4c 89 f2 48 c1 ea 03 <0f> b6 04 02 84 c0 74 08 3c 03 0f 8e 89 01 00 00 41 8b 16 41 0f b7 RSP: 0018:ffffc900005af988 EFLAGS: 00010246 RAX: dffffc0000000000 RBX: ffffc900005afae8 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffffffff832fc661 RDI: ffffc900005afc2a RBP: ffffc900005afae0 R08: 0000000000000001 R09: fffff520000b5f3c R10: 0000000000000003 R11: fffff520000b5f3b R12: ffff88810b6132d8 R13: 000000000000ffff R14: 0000000000000000 R15: ffffc900005afc28 FS: 0000000000000000(0000) GS:ffff88811aa00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fa0eda6a000 CR3: 0000000118f17000 CR4: 0000000000750ef0 PKRU: 55555554 Moreover move stat_work schedule out of the for loop.
CVE-2022-50734 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: nvmem: core: Fix memleak in nvmem_register() dev_set_name will alloc memory for nvmem->dev.kobj.name in nvmem_register, when nvmem_validate_keepouts failed, nvmem's memory will be freed and return, but nobody will free memory for nvmem->dev.kobj.name, there will be memleak, so moving nvmem_validate_keepouts() after device_register() and let the device core deal with cleaning name in error cases.
CVE-2022-50733 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: usb: idmouse: fix an uninit-value in idmouse_open In idmouse_create_image, if any ftip_command fails, it will go to the reset label. However, this leads to the data in bulk_in_buffer[HEADER..IMGSIZE] uninitialized. And the check for valid image incurs an uninitialized dereference. Fix this by moving the check before reset label since this check only be valid if the data after bulk_in_buffer[HEADER] has concrete data. Note that this is found by KMSAN, so only kernel compilation is tested.
CVE-2022-50732 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: staging: rtl8192u: Fix use after free in ieee80211_rx() We cannot dereference the "skb" pointer after calling ieee80211_monitor_rx(), because it is a use after free.
CVE-2022-50731 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: crypto: akcipher - default implementation for setting a private key Changes from v1: * removed the default implementation from set_pub_key: it is assumed that an implementation must always have this callback defined as there are no use case for an algorithm, which doesn't need a public key Many akcipher implementations (like ECDSA) support only signature verifications, so they don't have all callbacks defined. Commit 78a0324f4a53 ("crypto: akcipher - default implementations for request callbacks") introduced default callbacks for sign/verify operations, which just return an error code. However, these are not enough, because before calling sign the caller would likely call set_priv_key first on the instantiated transform (as the in-kernel testmgr does). This function does not have a default stub, so the kernel crashes, when trying to set a private key on an akcipher, which doesn't support signature generation. I've noticed this, when trying to add a KAT vector for ECDSA signature to the testmgr. With this patch the testmgr returns an error in dmesg (as it should) instead of crashing the kernel NULL ptr dereference.
CVE-2022-50730 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: ext4: silence the warning when evicting inode with dioread_nolock When evicting an inode with default dioread_nolock, it could be raced by the unwritten extents converting kworker after writeback some new allocated dirty blocks. It convert unwritten extents to written, the extents could be merged to upper level and free extent blocks, so it could mark the inode dirty again even this inode has been marked I_FREEING. But the inode->i_io_list check and warning in ext4_evict_inode() missing this corner case. Fortunately, ext4_evict_inode() will wait all extents converting finished before this check, so it will not lead to inode use-after-free problem, every thing is OK besides this warning. The WARN_ON_ONCE was originally designed for finding inode use-after-free issues in advance, but if we add current dioread_nolock case in, it will become not quite useful, so fix this warning by just remove this check. ====== WARNING: CPU: 7 PID: 1092 at fs/ext4/inode.c:227 ext4_evict_inode+0x875/0xc60 ... RIP: 0010:ext4_evict_inode+0x875/0xc60 ... Call Trace: <TASK> evict+0x11c/0x2b0 iput+0x236/0x3a0 do_unlinkat+0x1b4/0x490 __x64_sys_unlinkat+0x4c/0xb0 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x46/0xb0 RIP: 0033:0x7fa933c1115b ====== rm kworker ext4_end_io_end() vfs_unlink() ext4_unlink() ext4_convert_unwritten_io_end_vec() ext4_convert_unwritten_extents() ext4_map_blocks() ext4_ext_map_blocks() ext4_ext_try_to_merge_up() __mark_inode_dirty() check !I_FREEING locked_inode_to_wb_and_lock_list() iput() iput_final() evict() ext4_evict_inode() truncate_inode_pages_final() //wait release io_end inode_io_list_move_locked() ext4_release_io_end() trigger WARN_ON_ONCE()
CVE-2022-50729 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: ksmbd: Fix resource leak in ksmbd_session_rpc_open() When ksmbd_rpc_open() fails then it must call ksmbd_rpc_id_free() to undo the result of ksmbd_ipc_id_alloc().