| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
most: usb: fix double free on late probe failure
The MOST subsystem has a non-standard registration function which frees
the interface on registration failures and on deregistration.
This unsurprisingly leads to bugs in the MOST drivers, and a couple of
recent changes turned a reference underflow and use-after-free in the
USB driver into several double free and a use-after-free on late probe
failures. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86: intel: punit_ipc: fix memory corruption
This passes the address of the pointer "&punit_ipcdev" when the intent
was to pass the pointer itself "punit_ipcdev" (without the ampersand).
This means that the:
complete(&ipcdev->cmd_complete);
in intel_punit_ioc() will write to a wrong memory address corrupting it. |
| In the Linux kernel, the following vulnerability has been resolved:
s390/pci: Avoid deadlock between PCI error recovery and mlx5 crdump
Do not block PCI config accesses through pci_cfg_access_lock() when
executing the s390 variant of PCI error recovery: Acquire just
device_lock() instead of pci_dev_lock() as powerpc's EEH and
generig PCI AER processing do.
During error recovery testing a pair of tasks was reported to be hung:
mlx5_core 0000:00:00.1: mlx5_health_try_recover:338:(pid 5553): health recovery flow aborted, PCI reads still not working
INFO: task kmcheck:72 blocked for more than 122 seconds.
Not tainted 5.14.0-570.12.1.bringup7.el9.s390x #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:kmcheck state:D stack:0 pid:72 tgid:72 ppid:2 flags:0x00000000
Call Trace:
[<000000065256f030>] __schedule+0x2a0/0x590
[<000000065256f356>] schedule+0x36/0xe0
[<000000065256f572>] schedule_preempt_disabled+0x22/0x30
[<0000000652570a94>] __mutex_lock.constprop.0+0x484/0x8a8
[<000003ff800673a4>] mlx5_unload_one+0x34/0x58 [mlx5_core]
[<000003ff8006745c>] mlx5_pci_err_detected+0x94/0x140 [mlx5_core]
[<0000000652556c5a>] zpci_event_attempt_error_recovery+0xf2/0x398
[<0000000651b9184a>] __zpci_event_error+0x23a/0x2c0
INFO: task kworker/u1664:6:1514 blocked for more than 122 seconds.
Not tainted 5.14.0-570.12.1.bringup7.el9.s390x #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:kworker/u1664:6 state:D stack:0 pid:1514 tgid:1514 ppid:2 flags:0x00000000
Workqueue: mlx5_health0000:00:00.0 mlx5_fw_fatal_reporter_err_work [mlx5_core]
Call Trace:
[<000000065256f030>] __schedule+0x2a0/0x590
[<000000065256f356>] schedule+0x36/0xe0
[<0000000652172e28>] pci_wait_cfg+0x80/0xe8
[<0000000652172f94>] pci_cfg_access_lock+0x74/0x88
[<000003ff800916b6>] mlx5_vsc_gw_lock+0x36/0x178 [mlx5_core]
[<000003ff80098824>] mlx5_crdump_collect+0x34/0x1c8 [mlx5_core]
[<000003ff80074b62>] mlx5_fw_fatal_reporter_dump+0x6a/0xe8 [mlx5_core]
[<0000000652512242>] devlink_health_do_dump.part.0+0x82/0x168
[<0000000652513212>] devlink_health_report+0x19a/0x230
[<000003ff80075a12>] mlx5_fw_fatal_reporter_err_work+0xba/0x1b0 [mlx5_core]
No kernel log of the exact same error with an upstream kernel is
available - but the very same deadlock situation can be constructed there,
too:
- task: kmcheck
mlx5_unload_one() tries to acquire devlink lock while the PCI error
recovery code has set pdev->block_cfg_access by way of
pci_cfg_access_lock()
- task: kworker
mlx5_crdump_collect() tries to set block_cfg_access through
pci_cfg_access_lock() while devlink_health_report() had acquired
the devlink lock.
A similar deadlock situation can be reproduced by requesting a
crdump with
> devlink health dump show pci/<BDF> reporter fw_fatal
while PCI error recovery is executed on the same <BDF> physical function
by mlx5_core's pci_error_handlers. On s390 this can be injected with
> zpcictl --reset-fw <BDF>
Tests with this patch failed to reproduce that second deadlock situation,
the devlink command is rejected with "kernel answers: Permission denied" -
and we get a kernel log message of:
mlx5_core 1ed0:00:00.1: mlx5_crdump_collect:50:(pid 254382): crdump: failed to lock vsc gw err -5
because the config read of VSC_SEMAPHORE is rejected by the underlying
hardware.
Two prior attempts to address this issue have been discussed and
ultimately rejected [see link], with the primary argument that s390's
implementation of PCI error recovery is imposing restrictions that
neither powerpc's EEH nor PCI AER handling need. Tests show that PCI
error recovery on s390 is running to completion even without blocking
access to PCI config space. |
| In the Linux kernel, the following vulnerability has been resolved:
net: netpoll: fix incorrect refcount handling causing incorrect cleanup
commit efa95b01da18 ("netpoll: fix use after free") incorrectly
ignored the refcount and prematurely set dev->npinfo to NULL during
netpoll cleanup, leading to improper behavior and memory leaks.
Scenario causing lack of proper cleanup:
1) A netpoll is associated with a NIC (e.g., eth0) and netdev->npinfo is
allocated, and refcnt = 1
- Keep in mind that npinfo is shared among all netpoll instances. In
this case, there is just one.
2) Another netpoll is also associated with the same NIC and
npinfo->refcnt += 1.
- Now dev->npinfo->refcnt = 2;
- There is just one npinfo associated to the netdev.
3) When the first netpolls goes to clean up:
- The first cleanup succeeds and clears np->dev->npinfo, ignoring
refcnt.
- It basically calls `RCU_INIT_POINTER(np->dev->npinfo, NULL);`
- Set dev->npinfo = NULL, without proper cleanup
- No ->ndo_netpoll_cleanup() is either called
4) Now the second target tries to clean up
- The second cleanup fails because np->dev->npinfo is already NULL.
* In this case, ops->ndo_netpoll_cleanup() was never called, and
the skb pool is not cleaned as well (for the second netpoll
instance)
- This leaks npinfo and skbpool skbs, which is clearly reported by
kmemleak.
Revert commit efa95b01da18 ("netpoll: fix use after free") and adds
clarifying comments emphasizing that npinfo cleanup should only happen
once the refcount reaches zero, ensuring stable and correct netpoll
behavior. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/radeon: delete radeon_fence_process in is_signaled, no deadlock
Delete the attempt to progress the queue when checking if fence is
signaled. This avoids deadlock.
dma-fence_ops::signaled can be called with the fence lock in unknown
state. For radeon, the fence lock is also the wait queue lock. This can
cause a self deadlock when signaled() tries to make forward progress on
the wait queue. But advancing the queue is unneeded because incorrectly
returning false from signaled() is perfectly acceptable.
(cherry picked from commit 527ba26e50ec2ca2be9c7c82f3ad42998a75d0db) |
| In the Linux kernel, the following vulnerability has been resolved:
libceph: fix potential use-after-free in have_mon_and_osd_map()
The wait loop in __ceph_open_session() can race with the client
receiving a new monmap or osdmap shortly after the initial map is
received. Both ceph_monc_handle_map() and handle_one_map() install
a new map immediately after freeing the old one
kfree(monc->monmap);
monc->monmap = monmap;
ceph_osdmap_destroy(osdc->osdmap);
osdc->osdmap = newmap;
under client->monc.mutex and client->osdc.lock respectively, but
because neither is taken in have_mon_and_osd_map() it's possible for
client->monc.monmap->epoch and client->osdc.osdmap->epoch arms in
client->monc.monmap && client->monc.monmap->epoch &&
client->osdc.osdmap && client->osdc.osdmap->epoch;
condition to dereference an already freed map. This happens to be
reproducible with generic/395 and generic/397 with KASAN enabled:
BUG: KASAN: slab-use-after-free in have_mon_and_osd_map+0x56/0x70
Read of size 4 at addr ffff88811012d810 by task mount.ceph/13305
CPU: 2 UID: 0 PID: 13305 Comm: mount.ceph Not tainted 6.14.0-rc2-build2+ #1266
...
Call Trace:
<TASK>
have_mon_and_osd_map+0x56/0x70
ceph_open_session+0x182/0x290
ceph_get_tree+0x333/0x680
vfs_get_tree+0x49/0x180
do_new_mount+0x1a3/0x2d0
path_mount+0x6dd/0x730
do_mount+0x99/0xe0
__do_sys_mount+0x141/0x180
do_syscall_64+0x9f/0x100
entry_SYSCALL_64_after_hwframe+0x76/0x7e
</TASK>
Allocated by task 13305:
ceph_osdmap_alloc+0x16/0x130
ceph_osdc_init+0x27a/0x4c0
ceph_create_client+0x153/0x190
create_fs_client+0x50/0x2a0
ceph_get_tree+0xff/0x680
vfs_get_tree+0x49/0x180
do_new_mount+0x1a3/0x2d0
path_mount+0x6dd/0x730
do_mount+0x99/0xe0
__do_sys_mount+0x141/0x180
do_syscall_64+0x9f/0x100
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Freed by task 9475:
kfree+0x212/0x290
handle_one_map+0x23c/0x3b0
ceph_osdc_handle_map+0x3c9/0x590
mon_dispatch+0x655/0x6f0
ceph_con_process_message+0xc3/0xe0
ceph_con_v1_try_read+0x614/0x760
ceph_con_workfn+0x2de/0x650
process_one_work+0x486/0x7c0
process_scheduled_works+0x73/0x90
worker_thread+0x1c8/0x2a0
kthread+0x2ec/0x300
ret_from_fork+0x24/0x40
ret_from_fork_asm+0x1a/0x30
Rewrite the wait loop to check the above condition directly with
client->monc.mutex and client->osdc.lock taken as appropriate. While
at it, improve the timeout handling (previously mount_timeout could be
exceeded in case wait_event_interruptible_timeout() slept more than
once) and access client->auth_err under client->monc.mutex to match
how it's set in finish_auth().
monmap_show() and osdmap_show() now take the respective lock before
accessing the map as well. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: f_eem: Fix memory leak in eem_unwrap
The existing code did not handle the failure case of usb_ep_queue in the
command path, potentially leading to memory leaks.
Improve error handling to free all allocated resources on usb_ep_queue
failure. This patch continues to use goto logic for error handling, as the
existing error handling is complex and not easily adaptable to auto-cleanup
helpers.
kmemleak results:
unreferenced object 0xffffff895a512300 (size 240):
backtrace:
slab_post_alloc_hook+0xbc/0x3a4
kmem_cache_alloc+0x1b4/0x358
skb_clone+0x90/0xd8
eem_unwrap+0x1cc/0x36c
unreferenced object 0xffffff8a157f4000 (size 256):
backtrace:
slab_post_alloc_hook+0xbc/0x3a4
__kmem_cache_alloc_node+0x1b4/0x2dc
kmalloc_trace+0x48/0x140
dwc3_gadget_ep_alloc_request+0x58/0x11c
usb_ep_alloc_request+0x40/0xe4
eem_unwrap+0x204/0x36c
unreferenced object 0xffffff8aadbaac00 (size 128):
backtrace:
slab_post_alloc_hook+0xbc/0x3a4
__kmem_cache_alloc_node+0x1b4/0x2dc
__kmalloc+0x64/0x1a8
eem_unwrap+0x218/0x36c
unreferenced object 0xffffff89ccef3500 (size 64):
backtrace:
slab_post_alloc_hook+0xbc/0x3a4
__kmem_cache_alloc_node+0x1b4/0x2dc
kmalloc_trace+0x48/0x140
eem_unwrap+0x238/0x36c |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: btusb: mediatek: Avoid btusb_mtk_claim_iso_intf() NULL deref
In btusb_mtk_setup(), we set `btmtk_data->isopkt_intf` to:
usb_ifnum_to_if(data->udev, MTK_ISO_IFNUM)
That function can return NULL in some cases. Even when it returns
NULL, though, we still go on to call btusb_mtk_claim_iso_intf().
As of commit e9087e828827 ("Bluetooth: btusb: mediatek: Add locks for
usb_driver_claim_interface()"), calling btusb_mtk_claim_iso_intf()
when `btmtk_data->isopkt_intf` is NULL will cause a crash because
we'll end up passing a bad pointer to device_lock(). Prior to that
commit we'd pass the NULL pointer directly to
usb_driver_claim_interface() which would detect it and return an
error, which was handled.
Resolve the crash in btusb_mtk_claim_iso_intf() by adding a NULL check
at the start of the function. This makes the code handle a NULL
`btmtk_data->isopkt_intf` the same way it did before the problematic
commit (just with a slight change to the error message printed). |
| In the Linux kernel, the following vulnerability has been resolved:
nvme-multipath: fix lockdep WARN due to partition scan work
Blktests test cases nvme/014, 057 and 058 fail occasionally due to a
lockdep WARN. As reported in the Closes tag URL, the WARN indicates that
a deadlock can happen due to the dependency among disk->open_mutex,
kblockd workqueue completion and partition_scan_work completion.
To avoid the lockdep WARN and the potential deadlock, cut the dependency
by running the partition_scan_work not by kblockd workqueue but by
nvme_wq. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: core: Fix a regression triggered by scsi_host_busy()
Commit 995412e23bb2 ("blk-mq: Replace tags->lock with SRCU for tag
iterators") introduced the following regression:
Call trace:
__srcu_read_lock+0x30/0x80 (P)
blk_mq_tagset_busy_iter+0x44/0x300
scsi_host_busy+0x38/0x70
ufshcd_print_host_state+0x34/0x1bc
ufshcd_link_startup.constprop.0+0xe4/0x2e0
ufshcd_init+0x944/0xf80
ufshcd_pltfrm_init+0x504/0x820
ufs_rockchip_probe+0x2c/0x88
platform_probe+0x5c/0xa4
really_probe+0xc0/0x38c
__driver_probe_device+0x7c/0x150
driver_probe_device+0x40/0x120
__driver_attach+0xc8/0x1e0
bus_for_each_dev+0x7c/0xdc
driver_attach+0x24/0x30
bus_add_driver+0x110/0x230
driver_register+0x68/0x130
__platform_driver_register+0x20/0x2c
ufs_rockchip_pltform_init+0x1c/0x28
do_one_initcall+0x60/0x1e0
kernel_init_freeable+0x248/0x2c4
kernel_init+0x20/0x140
ret_from_fork+0x10/0x20
Fix this regression by making scsi_host_busy() check whether the SCSI
host tag set has already been initialized. tag_set->ops is set by
scsi_mq_setup_tags() just before blk_mq_alloc_tag_set() is called. This
fix is based on the assumption that scsi_host_busy() and
scsi_mq_setup_tags() calls are serialized. This is the case in the UFS
driver. |
| In the Linux kernel, the following vulnerability has been resolved:
ipv4: route: Prevent rt_bind_exception() from rebinding stale fnhe
The sit driver's packet transmission path calls: sit_tunnel_xmit() ->
update_or_create_fnhe(), which lead to fnhe_remove_oldest() being called
to delete entries exceeding FNHE_RECLAIM_DEPTH+random.
The race window is between fnhe_remove_oldest() selecting fnheX for
deletion and the subsequent kfree_rcu(). During this time, the
concurrent path's __mkroute_output() -> find_exception() can fetch the
soon-to-be-deleted fnheX, and rt_bind_exception() then binds it with a
new dst using a dst_hold(). When the original fnheX is freed via RCU,
the dst reference remains permanently leaked.
CPU 0 CPU 1
__mkroute_output()
find_exception() [fnheX]
update_or_create_fnhe()
fnhe_remove_oldest() [fnheX]
rt_bind_exception() [bind dst]
RCU callback [fnheX freed, dst leak]
This issue manifests as a device reference count leak and a warning in
dmesg when unregistering the net device:
unregister_netdevice: waiting for sitX to become free. Usage count = N
Ido Schimmel provided the simple test validation method [1].
The fix clears 'oldest->fnhe_daddr' before calling fnhe_flush_routes().
Since rt_bind_exception() checks this field, setting it to zero prevents
the stale fnhe from being reused and bound to a new dst just before it
is freed.
[1]
ip netns add ns1
ip -n ns1 link set dev lo up
ip -n ns1 address add 192.0.2.1/32 dev lo
ip -n ns1 link add name dummy1 up type dummy
ip -n ns1 route add 192.0.2.2/32 dev dummy1
ip -n ns1 link add name gretap1 up arp off type gretap \
local 192.0.2.1 remote 192.0.2.2
ip -n ns1 route add 198.51.0.0/16 dev gretap1
taskset -c 0 ip netns exec ns1 mausezahn gretap1 \
-A 198.51.100.1 -B 198.51.0.0/16 -t udp -p 1000 -c 0 -q &
taskset -c 2 ip netns exec ns1 mausezahn gretap1 \
-A 198.51.100.1 -B 198.51.0.0/16 -t udp -p 1000 -c 0 -q &
sleep 10
ip netns pids ns1 | xargs kill
ip netns del ns1 |
| In the Linux kernel, the following vulnerability has been resolved:
Input: pegasus-notetaker - fix potential out-of-bounds access
In the pegasus_notetaker driver, the pegasus_probe() function allocates
the URB transfer buffer using the wMaxPacketSize value from
the endpoint descriptor. An attacker can use a malicious USB descriptor
to force the allocation of a very small buffer.
Subsequently, if the device sends an interrupt packet with a specific
pattern (e.g., where the first byte is 0x80 or 0x42),
the pegasus_parse_packet() function parses the packet without checking
the allocated buffer size. This leads to an out-of-bounds memory access. |
| In the Linux kernel, the following vulnerability has been resolved:
nilfs2: avoid having an active sc_timer before freeing sci
Because kthread_stop did not stop sc_task properly and returned -EINTR,
the sc_timer was not properly closed, ultimately causing the problem [1]
reported by syzbot when freeing sci due to the sc_timer not being closed.
Because the thread sc_task main function nilfs_segctor_thread() returns 0
when it succeeds, when the return value of kthread_stop() is not 0 in
nilfs_segctor_destroy(), we believe that it has not properly closed
sc_timer.
We use timer_shutdown_sync() to sync wait for sc_timer to shutdown, and
set the value of sc_task to NULL under the protection of lock
sc_state_lock, so as to avoid the issue caused by sc_timer not being
properly shutdowned.
[1]
ODEBUG: free active (active state 0) object: 00000000dacb411a object type: timer_list hint: nilfs_construction_timeout
Call trace:
nilfs_segctor_destroy fs/nilfs2/segment.c:2811 [inline]
nilfs_detach_log_writer+0x668/0x8cc fs/nilfs2/segment.c:2877
nilfs_put_super+0x4c/0x12c fs/nilfs2/super.c:509 |
| In the Linux kernel, the following vulnerability has been resolved:
most: usb: hdm_probe: Fix calling put_device() before device initialization
The early error path in hdm_probe() can jump to err_free_mdev before
&mdev->dev has been initialized with device_initialize(). Calling
put_device(&mdev->dev) there triggers a device core WARN and ends up
invoking kref_put(&kobj->kref, kobject_release) on an uninitialized
kobject.
In this path the private struct was only kmalloc'ed and the intended
release is effectively kfree(mdev) anyway, so free it directly instead
of calling put_device() on an uninitialized device.
This removes the WARNING and fixes the pre-initialization error path. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Check NULL before accessing
[WHAT]
IGT kms_cursor_legacy's long-nonblocking-modeset-vs-cursor-atomic
fails with NULL pointer dereference. This can be reproduced with
both an eDP panel and a DP monitors connected.
BUG: kernel NULL pointer dereference, address: 0000000000000000
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: Oops: 0000 [#1] SMP NOPTI
CPU: 13 UID: 0 PID: 2960 Comm: kms_cursor_lega Not tainted
6.16.0-99-custom #8 PREEMPT(voluntary)
Hardware name: AMD ........
RIP: 0010:dc_stream_get_scanoutpos+0x34/0x130 [amdgpu]
Code: 57 4d 89 c7 41 56 49 89 ce 41 55 49 89 d5 41 54 49
89 fc 53 48 83 ec 18 48 8b 87 a0 64 00 00 48 89 75 d0 48 c7 c6 e0 41 30
c2 <48> 8b 38 48 8b 9f 68 06 00 00 e8 8d d7 fd ff 31 c0 48 81 c3 e0 02
RSP: 0018:ffffd0f3c2bd7608 EFLAGS: 00010292
RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffd0f3c2bd7668
RDX: ffffd0f3c2bd7664 RSI: ffffffffc23041e0 RDI: ffff8b32494b8000
RBP: ffffd0f3c2bd7648 R08: ffffd0f3c2bd766c R09: ffffd0f3c2bd7760
R10: ffffd0f3c2bd7820 R11: 0000000000000000 R12: ffff8b32494b8000
R13: ffffd0f3c2bd7664 R14: ffffd0f3c2bd7668 R15: ffffd0f3c2bd766c
FS: 000071f631b68700(0000) GS:ffff8b399f114000(0000)
knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 00000001b8105000 CR4: 0000000000f50ef0
PKRU: 55555554
Call Trace:
<TASK>
dm_crtc_get_scanoutpos+0xd7/0x180 [amdgpu]
amdgpu_display_get_crtc_scanoutpos+0x86/0x1c0 [amdgpu]
? __pfx_amdgpu_crtc_get_scanout_position+0x10/0x10[amdgpu]
amdgpu_crtc_get_scanout_position+0x27/0x50 [amdgpu]
drm_crtc_vblank_helper_get_vblank_timestamp_internal+0xf7/0x400
drm_crtc_vblank_helper_get_vblank_timestamp+0x1c/0x30
drm_crtc_get_last_vbltimestamp+0x55/0x90
drm_crtc_next_vblank_start+0x45/0xa0
drm_atomic_helper_wait_for_fences+0x81/0x1f0
...
(cherry picked from commit 621e55f1919640acab25383362b96e65f2baea3c) |
| NVIDIA Resiliency Extension for Linux contains a vulnerability in the checkpointing core, where an attacker may cause a race condition. A successful exploit of this vulnerability might lead to information disclosure, data tampering, denial of service, or escalation of privileges. |
| In the Linux kernel, the following vulnerability has been resolved:
tcp_metrics: use dst_dev_net_rcu()
Replace three dst_dev() with a lockdep enabled helper. |
| In the Linux kernel, the following vulnerability has been resolved:
hsr: hold rcu and dev lock for hsr_get_port_ndev
hsr_get_port_ndev calls hsr_for_each_port, which need to hold rcu lock.
On the other hand, before return the port device, we need to hold the
device reference to avoid UaF in the caller function. |
| In the Linux kernel, the following vulnerability has been resolved:
video: fbdev: nvidiafb: Use strscpy() to prevent buffer overflow
Coverity complains of a possible buffer overflow. However,
given the 'static' scope of nvidia_setup_i2c_bus() it looks
like that can't happen after examiniing the call sites.
CID 19036 (#1 of 1): Copy into fixed size buffer (STRING_OVERFLOW)
1. fixed_size_dest: You might overrun the 48-character fixed-size string
chan->adapter.name by copying name without checking the length.
2. parameter_as_source: Note: This defect has an elevated risk because the
source argument is a parameter of the current function.
89 strcpy(chan->adapter.name, name);
Fix this warning by using strscpy() which will silence the warning and
prevent any future buffer overflows should the names used to identify the
channel become much longer. |
| In the Linux kernel, the following vulnerability has been resolved:
video: fbdev: cirrusfb: check pixclock to avoid divide by zero
Do a sanity check on pixclock value to avoid divide by zero.
If the pixclock value is zero, the cirrusfb driver will round up
pixclock to get the derived frequency as close to maxclock as
possible.
Syzkaller reported a divide error in cirrusfb_check_pixclock.
divide error: 0000 [#1] SMP KASAN PTI
CPU: 0 PID: 14938 Comm: cirrusfb_test Not tainted 5.15.0-rc6 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-2
RIP: 0010:cirrusfb_check_var+0x6f1/0x1260
Call Trace:
fb_set_var+0x398/0xf90
do_fb_ioctl+0x4b8/0x6f0
fb_ioctl+0xeb/0x130
__x64_sys_ioctl+0x19d/0x220
do_syscall_64+0x3a/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae |