CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
A null pointer dereference vulnerability was found in dpll_pin_parent_pin_set() in drivers/dpll/dpll_netlink.c in the Digital Phase Locked Loop (DPLL) subsystem in the Linux kernel. This issue could be exploited to trigger a denial of service. |
nghttp2 is an implementation of the Hypertext Transfer Protocol version 2 in C. The nghttp2 library prior to version 1.61.0 keeps reading the unbounded number of HTTP/2 CONTINUATION frames even after a stream is reset to keep HPACK context in sync. This causes excessive CPU usage to decode HPACK stream. nghttp2 v1.61.0 mitigates this vulnerability by limiting the number of CONTINUATION frames it accepts per stream. There is no workaround for this vulnerability. |
Issue summary: Calling the OpenSSL API function SSL_select_next_proto with an
empty supported client protocols buffer may cause a crash or memory contents to
be sent to the peer.
Impact summary: A buffer overread can have a range of potential consequences
such as unexpected application beahviour or a crash. In particular this issue
could result in up to 255 bytes of arbitrary private data from memory being sent
to the peer leading to a loss of confidentiality. However, only applications
that directly call the SSL_select_next_proto function with a 0 length list of
supported client protocols are affected by this issue. This would normally never
be a valid scenario and is typically not under attacker control but may occur by
accident in the case of a configuration or programming error in the calling
application.
The OpenSSL API function SSL_select_next_proto is typically used by TLS
applications that support ALPN (Application Layer Protocol Negotiation) or NPN
(Next Protocol Negotiation). NPN is older, was never standardised and
is deprecated in favour of ALPN. We believe that ALPN is significantly more
widely deployed than NPN. The SSL_select_next_proto function accepts a list of
protocols from the server and a list of protocols from the client and returns
the first protocol that appears in the server list that also appears in the
client list. In the case of no overlap between the two lists it returns the
first item in the client list. In either case it will signal whether an overlap
between the two lists was found. In the case where SSL_select_next_proto is
called with a zero length client list it fails to notice this condition and
returns the memory immediately following the client list pointer (and reports
that there was no overlap in the lists).
This function is typically called from a server side application callback for
ALPN or a client side application callback for NPN. In the case of ALPN the list
of protocols supplied by the client is guaranteed by libssl to never be zero in
length. The list of server protocols comes from the application and should never
normally be expected to be of zero length. In this case if the
SSL_select_next_proto function has been called as expected (with the list
supplied by the client passed in the client/client_len parameters), then the
application will not be vulnerable to this issue. If the application has
accidentally been configured with a zero length server list, and has
accidentally passed that zero length server list in the client/client_len
parameters, and has additionally failed to correctly handle a "no overlap"
response (which would normally result in a handshake failure in ALPN) then it
will be vulnerable to this problem.
In the case of NPN, the protocol permits the client to opportunistically select
a protocol when there is no overlap. OpenSSL returns the first client protocol
in the no overlap case in support of this. The list of client protocols comes
from the application and should never normally be expected to be of zero length.
However if the SSL_select_next_proto function is accidentally called with a
client_len of 0 then an invalid memory pointer will be returned instead. If the
application uses this output as the opportunistic protocol then the loss of
confidentiality will occur.
This issue has been assessed as Low severity because applications are most
likely to be vulnerable if they are using NPN instead of ALPN - but NPN is not
widely used. It also requires an application configuration or programming error.
Finally, this issue would not typically be under attacker control making active
exploitation unlikely.
The FIPS modules in 3.3, 3.2, 3.1 and 3.0 are not affected by this issue.
Due to the low severity of this issue we are not issuing new releases of
OpenSSL at this time. The fix will be included in the next releases when they
become available. |
A flaw exists in gdk‑pixbuf within the gdk_pixbuf__jpeg_image_load_increment function (io-jpeg.c) and in glib’s g_base64_encode_step (glib/gbase64.c). When processing maliciously crafted JPEG images, a heap buffer overflow can occur during Base64 encoding, allowing out-of-bounds reads from heap memory, potentially causing application crashes or arbitrary code execution. |
A vulnerability was found in GnuTLS, where a cockpit (which uses gnuTLS) rejects a certificate chain with distributed trust. This issue occurs when validating a certificate chain with cockpit-certificate-ensure. This flaw allows an unauthenticated, remote client or attacker to initiate a denial of service attack. |
A null pointer dereference flaw was found in Libtiff via `tif_dirinfo.c`. This issue may allow an attacker to trigger memory allocation failures through certain means, such as restricting the heap space size or injecting faults, causing a segmentation fault. This can cause an application crash, eventually leading to a denial of service. |
A race condition vulnerability was discovered in how signals are handled by OpenSSH's server (sshd). If a remote attacker does not authenticate within a set time period, then sshd's SIGALRM handler is called asynchronously. However, this signal handler calls various functions that are not async-signal-safe, for example, syslog(). As a consequence of a successful attack, in the worst case scenario, an attacker may be able to perform a remote code execution (RCE) as an unprivileged user running the sshd server. |
A vulnerability was found in Performance Co-Pilot (PCP). This flaw can only be exploited if an attacker has access to a compromised PCP system account. The issue is related to the pmpost tool, which is used to log messages in the system. Under certain conditions, it runs with high-level privileges. |
A race condition flaw was found in sssd where the GPO policy is not consistently applied for authenticated users. This may lead to improper authorization issues, granting or denying access to resources inappropriately. |
A flaw has been discovered in GnuTLS where an application crash can be induced when attempting to verify a specially crafted .pem bundle using the "certtool --verify-chain" command. |
A security vulnerability has been discovered within rpm-ostree, pertaining to the /etc/shadow file in default builds having the world-readable bit enabled. This issue arises from the default permissions being set at a higher level than recommended, potentially exposing sensitive authentication data to unauthorized access. |
A timing side-channel vulnerability has been discovered in the opencryptoki package while processing RSA PKCS#1 v1.5 padded ciphertexts. This flaw could potentially enable unauthorized RSA ciphertext decryption or signing, even without access to the corresponding private key. |
A vulnerability was found in GnuTLS. The response times to malformed ciphertexts in RSA-PSK ClientKeyExchange differ from the response times of ciphertexts with correct PKCS#1 v1.5 padding. This issue may allow a remote attacker to perform a timing side-channel attack in the RSA-PSK key exchange, potentially leading to the leakage of sensitive data. CVE-2024-0553 is designated as an incomplete resolution for CVE-2023-5981. |
A vulnerability was found that the response times to malformed ciphertexts in RSA-PSK ClientKeyExchange differ from response times of ciphertexts with correct PKCS#1 v1.5 padding. |
A vulnerability was found in Samba's "rpcecho" development server, a non-Windows RPC server used to test Samba's DCE/RPC stack elements. This vulnerability stems from an RPC function that can be blocked indefinitely. The issue arises because the "rpcecho" service operates with only one worker in the main RPC task, allowing calls to the "rpcecho" server to be blocked for a specified time, causing service disruptions. This disruption is triggered by a "sleep()" call in the "dcesrv_echo_TestSleep()" function under specific conditions. Authenticated users or attackers can exploit this vulnerability to make calls to the "rpcecho" server, requesting it to block for a specified duration, effectively disrupting most services and leading to a complete denial of service on the AD DC. The DoS affects all other services as "rpcecho" runs in the main RPC task. |
A vulnerability was discovered in Samba, where the flaw allows SMB clients to truncate files, even with read-only permissions when the Samba VFS module "acl_xattr" is configured with "acl_xattr:ignore system acls = yes". The SMB protocol allows opening files when the client requests read-only access but then implicitly truncates the opened file to 0 bytes if the client specifies a separate OVERWRITE create disposition request. The issue arises in configurations that bypass kernel file system permissions checks, relying solely on Samba's permissions. |
An authentication bypass flaw was found in GRUB due to the way that GRUB uses the UUID of a device to search for the configuration file that contains the password hash for the GRUB password protection feature. An attacker capable of attaching an external drive such as a USB stick containing a file system with a duplicate UUID (the same as in the "/boot/" file system) can bypass the GRUB password protection feature on UEFI systems, which enumerate removable drives before non-removable ones. This issue was introduced in a downstream patch in Red Hat's version of grub2 and does not affect the upstream package. |
A path traversal vulnerability was identified in Samba when processing client pipe names connecting to Unix domain sockets within a private directory. Samba typically uses this mechanism to connect SMB clients to remote procedure call (RPC) services like SAMR LSA or SPOOLSS, which Samba initiates on demand. However, due to inadequate sanitization of incoming client pipe names, allowing a client to send a pipe name containing Unix directory traversal characters (../). This could result in SMB clients connecting as root to Unix domain sockets outside the private directory. If an attacker or client managed to send a pipe name resolving to an external service using an existing Unix domain socket, it could potentially lead to unauthorized access to the service and consequential adverse events, including compromise or service crashes. |
A path disclosure vulnerability was found in Samba. As part of the Spotlight protocol, Samba discloses the server-side absolute path of shares, files, and directories in the results for search queries. This flaw allows a malicious client or an attacker with a targeted RPC request to view the information that is part of the disclosed path. |
A Type Confusion vulnerability was found in Samba's mdssvc RPC service for Spotlight. When parsing Spotlight mdssvc RPC packets, one encoded data structure is a key-value style dictionary where the keys are character strings, and the values can be any of the supported types in the mdssvc protocol. Due to a lack of type checking in callers of the dalloc_value_for_key() function, which returns the object associated with a key, a caller may trigger a crash in talloc_get_size() when talloc detects that the passed-in pointer is not a valid talloc pointer. With an RPC worker process shared among multiple client connections, a malicious client or attacker can trigger a process crash in a shared RPC mdssvc worker process, affecting all other clients this worker serves. |