| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
tty: serial: ip22zilog: Use platform device for probing
After commit 84a9582fd203 ("serial: core: Start managing serial controllers
to enable runtime PM") serial drivers need to provide a device in
struct uart_port.dev otherwise an oops happens. To fix this issue
for ip22zilog driver switch driver to a platform driver and setup
the serial device in sgi-ip22 code. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/mempool: fix poisoning order>0 pages with HIGHMEM
The kernel test has reported:
BUG: unable to handle page fault for address: fffba000
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
*pde = 03171067 *pte = 00000000
Oops: Oops: 0002 [#1]
CPU: 0 UID: 0 PID: 1 Comm: swapper/0 Tainted: G T 6.18.0-rc2-00031-gec7f31b2a2d3 #1 NONE a1d066dfe789f54bc7645c7989957d2bdee593ca
Tainted: [T]=RANDSTRUCT
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
EIP: memset (arch/x86/include/asm/string_32.h:168 arch/x86/lib/memcpy_32.c:17)
Code: a5 8b 4d f4 83 e1 03 74 02 f3 a4 83 c4 04 5e 5f 5d 2e e9 73 41 01 00 90 90 90 3e 8d 74 26 00 55 89 e5 57 56 89 c6 89 d0 89 f7 <f3> aa 89 f0 5e 5f 5d 2e e9 53 41 01 00 cc cc cc 55 89 e5 53 57 56
EAX: 0000006b EBX: 00000015 ECX: 001fefff EDX: 0000006b
ESI: fffb9000 EDI: fffba000 EBP: c611fbf0 ESP: c611fbe8
DS: 007b ES: 007b FS: 0000 GS: 0000 SS: 0068 EFLAGS: 00010287
CR0: 80050033 CR2: fffba000 CR3: 0316e000 CR4: 00040690
Call Trace:
poison_element (mm/mempool.c:83 mm/mempool.c:102)
mempool_init_node (mm/mempool.c:142 mm/mempool.c:226)
mempool_init_noprof (mm/mempool.c:250 (discriminator 1))
? mempool_alloc_pages (mm/mempool.c:640)
bio_integrity_initfn (block/bio-integrity.c:483 (discriminator 8))
? mempool_alloc_pages (mm/mempool.c:640)
do_one_initcall (init/main.c:1283)
Christoph found out this is due to the poisoning code not dealing
properly with CONFIG_HIGHMEM because only the first page is mapped but
then the whole potentially high-order page is accessed.
We could give up on HIGHMEM here, but it's straightforward to fix this
with a loop that's mapping, poisoning or checking and unmapping
individual pages. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_core: lookup hci_conn on RX path on protocol side
The hdev lock/lookup/unlock/use pattern in the packet RX path doesn't
ensure hci_conn* is not concurrently modified/deleted. This locking
appears to be leftover from before conn_hash started using RCU
commit bf4c63252490b ("Bluetooth: convert conn hash to RCU")
and not clear if it had purpose since then.
Currently, there are code paths that delete hci_conn* from elsewhere
than the ordered hdev->workqueue where the RX work runs in. E.g.
commit 5af1f84ed13a ("Bluetooth: hci_sync: Fix UAF on hci_abort_conn_sync")
introduced some of these, and there probably were a few others before
it. It's better to do the locking so that even if these run
concurrently no UAF is possible.
Move the lookup of hci_conn and associated socket-specific conn to
protocol recv handlers, and do them within a single critical section
to cover hci_conn* usage and lookup.
syzkaller has reported a crash that appears to be this issue:
[Task hdev->workqueue] [Task 2]
hci_disconnect_all_sync
l2cap_recv_acldata(hcon)
hci_conn_get(hcon)
hci_abort_conn_sync(hcon)
hci_dev_lock
hci_dev_lock
hci_conn_del(hcon)
v-------------------------------- hci_dev_unlock
hci_conn_put(hcon)
conn = hcon->l2cap_data (UAF) |
| In the Linux kernel, the following vulnerability has been resolved:
lib/test_kho: check if KHO is enabled
We must check whether KHO is enabled prior to issuing KHO commands,
otherwise KHO internal data structures are not initialized. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/plane: Fix create_in_format_blob() return value
create_in_format_blob() is either supposed to return a valid
pointer or an error, but never NULL. The caller will dereference
the blob when it is not an error, and thus will oops if NULL
returned. Return proper error values in the failure cases. |
| In the Linux kernel, the following vulnerability has been resolved:
bfs: Reconstruct file type when loading from disk
syzbot is reporting that S_IFMT bits of inode->i_mode can become bogus when
the S_IFMT bits of the 32bits "mode" field loaded from disk are corrupted
or when the 32bits "attributes" field loaded from disk are corrupted.
A documentation says that BFS uses only lower 9 bits of the "mode" field.
But I can't find an explicit explanation that the unused upper 23 bits
(especially, the S_IFMT bits) are initialized with 0.
Therefore, ignore the S_IFMT bits of the "mode" field loaded from disk.
Also, verify that the value of the "attributes" field loaded from disk is
either BFS_VREG or BFS_VDIR (because BFS supports only regular files and
the root directory). |
| In the Linux kernel, the following vulnerability has been resolved:
rust_binder: fix race condition on death_list
Rust Binder contains the following unsafe operation:
// SAFETY: A `NodeDeath` is never inserted into the death list
// of any node other than its owner, so it is either in this
// death list or in no death list.
unsafe { node_inner.death_list.remove(self) };
This operation is unsafe because when touching the prev/next pointers of
a list element, we have to ensure that no other thread is also touching
them in parallel. If the node is present in the list that `remove` is
called on, then that is fine because we have exclusive access to that
list. If the node is not in any list, then it's also ok. But if it's
present in a different list that may be accessed in parallel, then that
may be a data race on the prev/next pointers.
And unfortunately that is exactly what is happening here. In
Node::release, we:
1. Take the lock.
2. Move all items to a local list on the stack.
3. Drop the lock.
4. Iterate the local list on the stack.
Combined with threads using the unsafe remove method on the original
list, this leads to memory corruption of the prev/next pointers. This
leads to crashes like this one:
Unable to handle kernel paging request at virtual address 000bb9841bcac70e
Mem abort info:
ESR = 0x0000000096000044
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x04: level 0 translation fault
Data abort info:
ISV = 0, ISS = 0x00000044, ISS2 = 0x00000000
CM = 0, WnR = 1, TnD = 0, TagAccess = 0
GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
[000bb9841bcac70e] address between user and kernel address ranges
Internal error: Oops: 0000000096000044 [#1] PREEMPT SMP
google-cdd 538c004.gcdd: context saved(CPU:1)
item - log_kevents is disabled
Modules linked in: ... rust_binder
CPU: 1 UID: 0 PID: 2092 Comm: kworker/1:178 Tainted: G S W OE 6.12.52-android16-5-g98debd5df505-4k #1 f94a6367396c5488d635708e43ee0c888d230b0b
Tainted: [S]=CPU_OUT_OF_SPEC, [W]=WARN, [O]=OOT_MODULE, [E]=UNSIGNED_MODULE
Hardware name: MUSTANG PVT 1.0 based on LGA (DT)
Workqueue: events _RNvXs6_NtCsdfZWD8DztAw_6kernel9workqueueINtNtNtB7_4sync3arc3ArcNtNtCs8QPsHWIn21X_16rust_binder_main7process7ProcessEINtB5_15WorkItemPointerKy0_E3runB13_ [rust_binder]
pstate: 23400005 (nzCv daif +PAN -UAO +TCO +DIT -SSBS BTYPE=--)
pc : _RNvXs3_NtCs8QPsHWIn21X_16rust_binder_main7processNtB5_7ProcessNtNtCsdfZWD8DztAw_6kernel9workqueue8WorkItem3run+0x450/0x11f8 [rust_binder]
lr : _RNvXs3_NtCs8QPsHWIn21X_16rust_binder_main7processNtB5_7ProcessNtNtCsdfZWD8DztAw_6kernel9workqueue8WorkItem3run+0x464/0x11f8 [rust_binder]
sp : ffffffc09b433ac0
x29: ffffffc09b433d30 x28: ffffff8821690000 x27: ffffffd40cbaa448
x26: ffffff8821690000 x25: 00000000ffffffff x24: ffffff88d0376578
x23: 0000000000000001 x22: ffffffc09b433c78 x21: ffffff88e8f9bf40
x20: ffffff88e8f9bf40 x19: ffffff882692b000 x18: ffffffd40f10bf00
x17: 00000000c006287d x16: 00000000c006287d x15: 00000000000003b0
x14: 0000000000000100 x13: 000000201cb79ae0 x12: fffffffffffffff0
x11: 0000000000000000 x10: 0000000000000001 x9 : 0000000000000000
x8 : b80bb9841bcac706 x7 : 0000000000000001 x6 : fffffffebee63f30
x5 : 0000000000000000 x4 : 0000000000000001 x3 : 0000000000000000
x2 : 0000000000004c31 x1 : ffffff88216900c0 x0 : ffffff88e8f9bf00
Call trace:
_RNvXs3_NtCs8QPsHWIn21X_16rust_binder_main7processNtB5_7ProcessNtNtCsdfZWD8DztAw_6kernel9workqueue8WorkItem3run+0x450/0x11f8 [rust_binder bbc172b53665bbc815363b22e97e3f7e3fe971fc]
process_scheduled_works+0x1c4/0x45c
worker_thread+0x32c/0x3e8
kthread+0x11c/0x1c8
ret_from_fork+0x10/0x20
Code: 94218d85 b4000155 a94026a8 d10102a0 (f9000509)
---[ end trace 0000000000000000 ]---
Thus, modify Node::release to pop items directly off the original list. |
| In the Linux kernel, the following vulnerability has been resolved:
net: ethernet: ti: netcp: Standardize knav_dma_open_channel to return NULL on error
Make knav_dma_open_channel consistently return NULL on error instead
of ERR_PTR. Currently the header include/linux/soc/ti/knav_dma.h
returns NULL when the driver is disabled, but the driver
implementation does not even return NULL or ERR_PTR on failure,
causing inconsistency in the users. This results in a crash in
netcp_free_navigator_resources as followed (trimmed):
Unhandled fault: alignment exception (0x221) at 0xfffffff2
[fffffff2] *pgd=80000800207003, *pmd=82ffda003, *pte=00000000
Internal error: : 221 [#1] SMP ARM
Modules linked in:
CPU: 0 UID: 0 PID: 1 Comm: swapper/0 Not tainted 6.17.0-rc7 #1 NONE
Hardware name: Keystone
PC is at knav_dma_close_channel+0x30/0x19c
LR is at netcp_free_navigator_resources+0x2c/0x28c
[... TRIM...]
Call trace:
knav_dma_close_channel from netcp_free_navigator_resources+0x2c/0x28c
netcp_free_navigator_resources from netcp_ndo_open+0x430/0x46c
netcp_ndo_open from __dev_open+0x114/0x29c
__dev_open from __dev_change_flags+0x190/0x208
__dev_change_flags from netif_change_flags+0x1c/0x58
netif_change_flags from dev_change_flags+0x38/0xa0
dev_change_flags from ip_auto_config+0x2c4/0x11f0
ip_auto_config from do_one_initcall+0x58/0x200
do_one_initcall from kernel_init_freeable+0x1cc/0x238
kernel_init_freeable from kernel_init+0x1c/0x12c
kernel_init from ret_from_fork+0x14/0x38
[... TRIM...]
Standardize the error handling by making the function return NULL on
all error conditions. The API is used in just the netcp_core.c so the
impact is limited.
Note, this change, in effect reverts commit 5b6cb43b4d62 ("net:
ethernet: ti: netcp_core: return error while dma channel open issue"),
but provides a less error prone implementation. |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: fix address removal logic in mptcp_pm_nl_rm_addr
Fix inverted WARN_ON_ONCE condition that prevented normal address
removal counter updates. The current code only executes decrement
logic when the counter is already 0 (abnormal state), while
normal removals (counter > 0) are ignored. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm: make sure last_fence is always updated
Update last_fence in the vm-bind path instead of kernel managed path.
last_fence is used to wait for work to finish in vm_bind contexts but not
used for kernel managed contexts.
This fixes a bug where last_fence is not waited on context close leading
to faults as resources are freed while in use.
Patchwork: https://patchwork.freedesktop.org/patch/680080/ |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/net: ensure vectored buffer node import is tied to notification
When support for vectored registered buffers was added, the import
itself is using 'req' rather than the notification io_kiocb, sr->notif.
For non-vectored imports, sr->notif is correctly used. This is important
as the lifetime of the two may be different. Use the correct io_kiocb
for the vectored buffer import. |
| In the Linux kernel, the following vulnerability has been resolved:
most: usb: hdm_probe: Fix calling put_device() before device initialization
The early error path in hdm_probe() can jump to err_free_mdev before
&mdev->dev has been initialized with device_initialize(). Calling
put_device(&mdev->dev) there triggers a device core WARN and ends up
invoking kref_put(&kobj->kref, kobject_release) on an uninitialized
kobject.
In this path the private struct was only kmalloc'ed and the intended
release is effectively kfree(mdev) anyway, so free it directly instead
of calling put_device() on an uninitialized device.
This removes the WARNING and fixes the pre-initialization error path. |
| In the Linux kernel, the following vulnerability has been resolved:
mm: don't spin in add_stack_record when gfp flags don't allow
syzbot was able to find the following path:
add_stack_record_to_list mm/page_owner.c:182 [inline]
inc_stack_record_count mm/page_owner.c:214 [inline]
__set_page_owner+0x2c3/0x4a0 mm/page_owner.c:333
set_page_owner include/linux/page_owner.h:32 [inline]
post_alloc_hook+0x240/0x2a0 mm/page_alloc.c:1851
prep_new_page mm/page_alloc.c:1859 [inline]
get_page_from_freelist+0x21e4/0x22c0 mm/page_alloc.c:3858
alloc_pages_nolock_noprof+0x94/0x120 mm/page_alloc.c:7554
Don't spin in add_stack_record_to_list() when it is called
from *_nolock() context. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: btusb: mediatek: Avoid btusb_mtk_claim_iso_intf() NULL deref
In btusb_mtk_setup(), we set `btmtk_data->isopkt_intf` to:
usb_ifnum_to_if(data->udev, MTK_ISO_IFNUM)
That function can return NULL in some cases. Even when it returns
NULL, though, we still go on to call btusb_mtk_claim_iso_intf().
As of commit e9087e828827 ("Bluetooth: btusb: mediatek: Add locks for
usb_driver_claim_interface()"), calling btusb_mtk_claim_iso_intf()
when `btmtk_data->isopkt_intf` is NULL will cause a crash because
we'll end up passing a bad pointer to device_lock(). Prior to that
commit we'd pass the NULL pointer directly to
usb_driver_claim_interface() which would detect it and return an
error, which was handled.
Resolve the crash in btusb_mtk_claim_iso_intf() by adding a NULL check
at the start of the function. This makes the code handle a NULL
`btmtk_data->isopkt_intf` the same way it did before the problematic
commit (just with a slight change to the error message printed). |
| In the Linux kernel, the following vulnerability has been resolved:
drm, fbcon, vga_switcheroo: Avoid race condition in fbcon setup
Protect vga_switcheroo_client_fb_set() with console lock. Avoids OOB
access in fbcon_remap_all(). Without holding the console lock the call
races with switching outputs.
VGA switcheroo calls fbcon_remap_all() when switching clients. The fbcon
function uses struct fb_info.node, which is set by register_framebuffer().
As the fb-helper code currently sets up VGA switcheroo before registering
the framebuffer, the value of node is -1 and therefore not a legal value.
For example, fbcon uses the value within set_con2fb_map() [1] as an index
into an array.
Moving vga_switcheroo_client_fb_set() after register_framebuffer() can
result in VGA switching that does not switch fbcon correctly.
Therefore move vga_switcheroo_client_fb_set() under fbcon_fb_registered(),
which already holds the console lock. Fbdev calls fbcon_fb_registered()
from within register_framebuffer(). Serializes the helper with VGA
switcheroo's call to fbcon_remap_all().
Although vga_switcheroo_client_fb_set() takes an instance of struct fb_info
as parameter, it really only needs the contained fbcon state. Moving the
call to fbcon initialization is therefore cleaner than before. Only amdgpu,
i915, nouveau and radeon support vga_switcheroo. For all other drivers,
this change does nothing. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/tegra: Add call to put_pid()
Add a call to put_pid() corresponding to get_task_pid().
host1x_memory_context_alloc() does not take ownership of the PID so we
need to free it here to avoid leaking.
[mperttunen@nvidia.com: reword commit message] |
| In the Linux kernel, the following vulnerability has been resolved:
drm/radeon: delete radeon_fence_process in is_signaled, no deadlock
Delete the attempt to progress the queue when checking if fence is
signaled. This avoids deadlock.
dma-fence_ops::signaled can be called with the fence lock in unknown
state. For radeon, the fence lock is also the wait queue lock. This can
cause a self deadlock when signaled() tries to make forward progress on
the wait queue. But advancing the queue is unneeded because incorrectly
returning false from signaled() is perfectly acceptable.
(cherry picked from commit 527ba26e50ec2ca2be9c7c82f3ad42998a75d0db) |
| In the Linux kernel, the following vulnerability has been resolved:
can: kvaser_usb: leaf: Fix potential infinite loop in command parsers
The `kvaser_usb_leaf_wait_cmd()` and `kvaser_usb_leaf_read_bulk_callback`
functions contain logic to zero-length commands. These commands are used
to align data to the USB endpoint's wMaxPacketSize boundary.
The driver attempts to skip these placeholders by aligning the buffer
position `pos` to the next packet boundary using `round_up()` function.
However, if zero-length command is found exactly on a packet boundary
(i.e., `pos` is a multiple of wMaxPacketSize, including 0), `round_up`
function will return the unchanged value of `pos`. This prevents `pos`
to be increased, causing an infinite loop in the parsing logic.
This patch fixes this in the function by using `pos + 1` instead.
This ensures that even if `pos` is on a boundary, the calculation is
based on `pos + 1`, forcing `round_up()` to always return the next
aligned boundary. |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix incomplete backport in cfids_invalidation_worker()
The previous commit bdb596ceb4b7 ("smb: client: fix potential UAF in
smb2_close_cached_fid()") was an incomplete backport and missed one
kref_put() call in cfids_invalidation_worker() that should have been
converted to close_cached_dir(). |
| In the Linux kernel, the following vulnerability has been resolved:
mm/memfd: fix information leak in hugetlb folios
When allocating hugetlb folios for memfd, three initialization steps are
missing:
1. Folios are not zeroed, leading to kernel memory disclosure to userspace
2. Folios are not marked uptodate before adding to page cache
3. hugetlb_fault_mutex is not taken before hugetlb_add_to_page_cache()
The memfd allocation path bypasses the normal page fault handler
(hugetlb_no_page) which would handle all of these initialization steps.
This is problematic especially for udmabuf use cases where folios are
pinned and directly accessed by userspace via DMA.
Fix by matching the initialization pattern used in hugetlb_no_page():
- Zero the folio using folio_zero_user() which is optimized for huge pages
- Mark it uptodate with folio_mark_uptodate()
- Take hugetlb_fault_mutex before adding to page cache to prevent races
The folio_zero_user() change also fixes a potential security issue where
uninitialized kernel memory could be disclosed to userspace through read()
or mmap() operations on the memfd. |