| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
fou: Don't allow 0 for FOU_ATTR_IPPROTO.
fou_udp_recv() has the same problem mentioned in the previous
patch.
If FOU_ATTR_IPPROTO is set to 0, skb is not freed by
fou_udp_recv() nor "resubmit"-ted in ip_protocol_deliver_rcu().
Let's forbid 0 for FOU_ATTR_IPPROTO. |
| In the Linux kernel, the following vulnerability has been resolved:
uacce: fix cdev handling in the cleanup path
When cdev_device_add fails, it internally releases the cdev memory,
and if cdev_device_del is then executed, it will cause a hang error.
To fix it, we check the return value of cdev_device_add() and clear
uacce->cdev to avoid calling cdev_device_del in the uacce_remove. |
| In the Linux kernel, the following vulnerability has been resolved:
netrom: fix double-free in nr_route_frame()
In nr_route_frame(), old_skb is immediately freed without checking if
nr_neigh->ax25 pointer is NULL. Therefore, if nr_neigh->ax25 is NULL,
the caller function will free old_skb again, causing a double-free bug.
Therefore, to prevent this, we need to modify it to check whether
nr_neigh->ax25 is NULL before freeing old_skb. |
| A maliciously crafted GIF file, when parsed through Autodesk 3ds Max, can cause a Stack-Based Buffer Overflow vulnerability. A malicious actor can leverage this vulnerability to execute arbitrary code in the context of the current process. |
| Nukegraphic CMS v3.1.2 contains a stored cross-site scripting (XSS) vulnerability in the user profile edit functionality at /ngc-cms/user-edit-profile.php. The application fails to properly sanitize user input in the name field before storing it in the database and rendering it across multiple CMS pages. An authenticated attacker with low privileges can inject malicious JavaScript payloads through the profile edit request, which are then executed site-wide whenever the affected user's name is displayed. This allows the attacker to execute arbitrary JavaScript in the context of other users' sessions, potentially leading to session hijacking, credential theft, or unauthorized actions performed on behalf of victims. |
| The Peter's Date Countdown plugin for WordPress is vulnerable to Reflected Cross-Site Scripting via the `$_SERVER['PHP_SELF']` parameter in all versions up to, and including, 2.0.0 due to insufficient input sanitization and output escaping. This makes it possible for unauthenticated attackers to inject arbitrary web scripts in pages that execute if they can successfully trick a user into performing an action such as clicking on a link. |
| Navidrome is an open source web-based music collection server and streamer. Prior to version 0.60.0, a cross-site scripting vulnerability in the frontend allows a malicious attacker to inject code through the comment metadata of a song to exfiltrate user credentials. This issue has been patched in version 0.60.0. |
| Authentication Bypass Using an Alternate Path or Channel vulnerability in Drupal Microsoft Entra ID SSO Login allows Privilege Escalation.This issue affects Microsoft Entra ID SSO Login: from 0.0.0 before 1.0.4. |
| In the Linux kernel, the following vulnerability has been resolved:
i2c: riic: Move suspend handling to NOIRQ phase
Commit 53326135d0e0 ("i2c: riic: Add suspend/resume support") added
suspend support for the Renesas I2C driver and following this change
on RZ/G3E the following WARNING is seen on entering suspend ...
[ 134.275704] Freezing remaining freezable tasks completed (elapsed 0.001 seconds)
[ 134.285536] ------------[ cut here ]------------
[ 134.290298] i2c i2c-2: Transfer while suspended
[ 134.295174] WARNING: drivers/i2c/i2c-core.h:56 at __i2c_smbus_xfer+0x1e4/0x214, CPU#0: systemd-sleep/388
[ 134.365507] Tainted: [W]=WARN
[ 134.368485] Hardware name: Renesas SMARC EVK version 2 based on r9a09g047e57 (DT)
[ 134.375961] pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 134.382935] pc : __i2c_smbus_xfer+0x1e4/0x214
[ 134.387329] lr : __i2c_smbus_xfer+0x1e4/0x214
[ 134.391717] sp : ffff800083f23860
[ 134.395040] x29: ffff800083f23860 x28: 0000000000000000 x27: ffff800082ed5d60
[ 134.402226] x26: 0000001f4395fd74 x25: 0000000000000007 x24: 0000000000000001
[ 134.409408] x23: 0000000000000000 x22: 000000000000006f x21: ffff800083f23936
[ 134.416589] x20: ffff0000c090e140 x19: ffff0000c090e0d0 x18: 0000000000000006
[ 134.423771] x17: 6f63657320313030 x16: 2e30206465737061 x15: ffff800083f23280
[ 134.430953] x14: 0000000000000000 x13: ffff800082b16ce8 x12: 0000000000000f09
[ 134.438134] x11: 0000000000000503 x10: ffff800082b6ece8 x9 : ffff800082b16ce8
[ 134.445315] x8 : 00000000ffffefff x7 : ffff800082b6ece8 x6 : 80000000fffff000
[ 134.452495] x5 : 0000000000000504 x4 : 0000000000000000 x3 : 0000000000000000
[ 134.459672] x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff0000c9ee9e80
[ 134.466851] Call trace:
[ 134.469311] __i2c_smbus_xfer+0x1e4/0x214 (P)
[ 134.473715] i2c_smbus_xfer+0xbc/0x120
[ 134.477507] i2c_smbus_read_byte_data+0x4c/0x84
[ 134.482077] isl1208_i2c_read_time+0x44/0x178 [rtc_isl1208]
[ 134.487703] isl1208_rtc_read_time+0x14/0x20 [rtc_isl1208]
[ 134.493226] __rtc_read_time+0x44/0x88
[ 134.497012] rtc_read_time+0x3c/0x68
[ 134.500622] rtc_suspend+0x9c/0x170
The warning is triggered because I2C transfers can still be attempted
while the controller is already suspended, due to inappropriate ordering
of the system sleep callbacks.
If the controller is autosuspended, there is no way to wake it up once
runtime PM disabled (in suspend_late()). During system resume, the I2C
controller will be available only after runtime PM is re-enabled
(in resume_early()). However, this may be too late for some devices.
Wake up the controller in the suspend() callback while runtime PM is
still enabled. The I2C controller will remain available until the
suspend_noirq() callback (pm_runtime_force_suspend()) is called. During
resume, the I2C controller can be restored by the resume_noirq() callback
(pm_runtime_force_resume()). Finally, the resume() callback re-enables
autosuspend. As a result, the I2C controller can remain available until
the system enters suspend_noirq() and from resume_noirq(). |
| GLPI is a free asset and IT management software package. From version 0.85 to before 10.0.23, an authenticated user can perform a SQL injection. This issue has been patched in version 10.0.23. |
| JinJava is a Java-based template engine based on django template syntax, adapted to render jinja templates. Prior to versions 2.7.6 and 2.8.3, JinJava is vulnerable to arbitrary Java execution via bypass through ForTag. This allows arbitrary Java class instantiation and file access bypassing built-in sandbox restrictions. This issue has been patched in versions 2.7.6 and 2.8.3. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: authencesn - reject too-short AAD (assoclen<8) to match ESP/ESN spec
authencesn assumes an ESP/ESN-formatted AAD. When assoclen is shorter than
the minimum expected length, crypto_authenc_esn_decrypt() can advance past
the end of the destination scatterlist and trigger a NULL pointer dereference
in scatterwalk_map_and_copy(), leading to a kernel panic (DoS).
Add a minimum AAD length check to fail fast on invalid inputs. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86/amd: Fix memory leak in wbrf_record()
The tmp buffer is allocated using kcalloc() but is not freed if
acpi_evaluate_dsm() fails. This causes a memory leak in the error path.
Fix this by explicitly freeing the tmp buffer in the error handling
path of acpi_evaluate_dsm(). |
| In the Linux kernel, the following vulnerability has been resolved:
regmap: Fix race condition in hwspinlock irqsave routine
Previously, the address of the shared member '&map->spinlock_flags' was
passed directly to 'hwspin_lock_timeout_irqsave'. This creates a race
condition where multiple contexts contending for the lock could overwrite
the shared flags variable, potentially corrupting the state for the
current lock owner.
Fix this by using a local stack variable 'flags' to store the IRQ state
temporarily. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/vma: fix anon_vma UAF on mremap() faulted, unfaulted merge
Patch series "mm/vma: fix anon_vma UAF on mremap() faulted, unfaulted
merge", v2.
Commit 879bca0a2c4f ("mm/vma: fix incorrectly disallowed anonymous VMA
merges") introduced the ability to merge previously unavailable VMA merge
scenarios.
However, it is handling merges incorrectly when it comes to mremap() of a
faulted VMA adjacent to an unfaulted VMA. The issues arise in three
cases:
1. Previous VMA unfaulted:
copied -----|
v
|-----------|.............|
| unfaulted |(faulted VMA)|
|-----------|.............|
prev
2. Next VMA unfaulted:
copied -----|
v
|.............|-----------|
|(faulted VMA)| unfaulted |
|.............|-----------|
next
3. Both adjacent VMAs unfaulted:
copied -----|
v
|-----------|.............|-----------|
| unfaulted |(faulted VMA)| unfaulted |
|-----------|.............|-----------|
prev next
This series fixes each of these cases, and introduces self tests to assert
that the issues are corrected.
I also test a further case which was already handled, to assert that my
changes continues to correctly handle it:
4. prev unfaulted, next faulted:
copied -----|
v
|-----------|.............|-----------|
| unfaulted |(faulted VMA)| faulted |
|-----------|.............|-----------|
prev next
This bug was discovered via a syzbot report, linked to in the first patch
in the series, I confirmed that this series fixes the bug.
I also discovered that we are failing to check that the faulted VMA was
not forked when merging a copied VMA in cases 1-3 above, an issue this
series also addresses.
I also added self tests to assert that this is resolved (and confirmed
that the tests failed prior to this).
I also cleaned up vma_expand() as part of this work, renamed
vma_had_uncowed_parents() to vma_is_fork_child() as the previous name was
unduly confusing, and simplified the comments around this function.
This patch (of 4):
Commit 879bca0a2c4f ("mm/vma: fix incorrectly disallowed anonymous VMA
merges") introduced the ability to merge previously unavailable VMA merge
scenarios.
The key piece of logic introduced was the ability to merge a faulted VMA
immediately next to an unfaulted VMA, which relies upon dup_anon_vma() to
correctly handle anon_vma state.
In the case of the merge of an existing VMA (that is changing properties
of a VMA and then merging if those properties are shared by adjacent
VMAs), dup_anon_vma() is invoked correctly.
However in the case of the merge of a new VMA, a corner case peculiar to
mremap() was missed.
The issue is that vma_expand() only performs dup_anon_vma() if the target
(the VMA that will ultimately become the merged VMA): is not the next VMA,
i.e. the one that appears after the range in which the new VMA is to be
established.
A key insight here is that in all other cases other than mremap(), a new
VMA merge either expands an existing VMA, meaning that the target VMA will
be that VMA, or would have anon_vma be NULL.
Specifically:
* __mmap_region() - no anon_vma in place, initial mapping.
* do_brk_flags() - expanding an existing VMA.
* vma_merge_extend() - expanding an existing VMA.
* relocate_vma_down() - no anon_vma in place, initial mapping.
In addition, we are in the unique situation of needing to duplicate
anon_vma state from a VMA that is neither the previous or next VMA being
merged with.
dup_anon_vma() deals exclusively with the target=unfaulted, src=faulted
case. This leaves four possibilities, in each case where the copied VMA
is faulted:
1. Previous VMA unfaulted:
copied -----|
---truncated--- |
| Easy-Hide-IP 5.0.0.3 contains an unquoted service path vulnerability in the EasyRedirect service that allows local attackers to potentially execute arbitrary code. Attackers can exploit the unquoted path in 'C:\Program Files\Easy-Hide-IP\rdr\EasyRedirect.exe' to inject malicious executables and escalate privileges. |
| Improper Check for Unusual or Exceptional Conditions vulnerability in Drupal Group invite allows Forceful Browsing.This issue affects Group invite: from 0.0.0 before 2.3.9, from 3.0.0 before 3.0.4, from 4.0.0 before 4.0.4. |
| Privilege Defined With Unsafe Actions vulnerability in Drupal Role Delegation allows Privilege Escalation.This issue affects Role Delegation: from 1.3.0 before 1.5.0. |
| In the Linux kernel, the following vulnerability has been resolved:
vsock/virtio: cap TX credit to local buffer size
The virtio transports derives its TX credit directly from peer_buf_alloc,
which is set from the remote endpoint's SO_VM_SOCKETS_BUFFER_SIZE value.
On the host side this means that the amount of data we are willing to
queue for a connection is scaled by a guest-chosen buffer size, rather
than the host's own vsock configuration. A malicious guest can advertise
a large buffer and read slowly, causing the host to allocate a
correspondingly large amount of sk_buff memory.
The same thing would happen in the guest with a malicious host, since
virtio transports share the same code base.
Introduce a small helper, virtio_transport_tx_buf_size(), that
returns min(peer_buf_alloc, buf_alloc), and use it wherever we consume
peer_buf_alloc.
This ensures the effective TX window is bounded by both the peer's
advertised buffer and our own buf_alloc (already clamped to
buffer_max_size via SO_VM_SOCKETS_BUFFER_MAX_SIZE), so a remote peer
cannot force the other to queue more data than allowed by its own
vsock settings.
On an unpatched Ubuntu 22.04 host (~64 GiB RAM), running a PoC with
32 guest vsock connections advertising 2 GiB each and reading slowly
drove Slab/SUnreclaim from ~0.5 GiB to ~57 GiB; the system only
recovered after killing the QEMU process. That said, if QEMU memory is
limited with cgroups, the maximum memory used will be limited.
With this patch applied:
Before:
MemFree: ~61.6 GiB
Slab: ~142 MiB
SUnreclaim: ~117 MiB
After 32 high-credit connections:
MemFree: ~61.5 GiB
Slab: ~178 MiB
SUnreclaim: ~152 MiB
Only ~35 MiB increase in Slab/SUnreclaim, no host OOM, and the guest
remains responsive.
Compatibility with non-virtio transports:
- VMCI uses the AF_VSOCK buffer knobs to size its queue pairs per
socket based on the local vsk->buffer_* values; the remote side
cannot enlarge those queues beyond what the local endpoint
configured.
- Hyper-V's vsock transport uses fixed-size VMBus ring buffers and
an MTU bound; there is no peer-controlled credit field comparable
to peer_buf_alloc, and the remote endpoint cannot drive in-flight
kernel memory above those ring sizes.
- The loopback path reuses virtio_transport_common.c, so it
naturally follows the same semantics as the virtio transport.
This change is limited to virtio_transport_common.c and thus affects
virtio-vsock, vhost-vsock, and loopback, bringing them in line with the
"remote window intersected with local policy" behaviour that VMCI and
Hyper-V already effectively have.
[Stefano: small adjustments after changing the previous patch]
[Stefano: tweak the commit message] |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: xen: scsiback: Fix potential memory leak in scsiback_remove()
Memory allocated for struct vscsiblk_info in scsiback_probe() is not
freed in scsiback_remove() leading to potential memory leaks on remove,
as well as in the scsiback_probe() error paths. Fix that by freeing it
in scsiback_remove(). |