Search

Search Results (331337 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2026-23083 1 Linux 1 Linux Kernel 2026-02-05 N/A
In the Linux kernel, the following vulnerability has been resolved: fou: Don't allow 0 for FOU_ATTR_IPPROTO. fou_udp_recv() has the same problem mentioned in the previous patch. If FOU_ATTR_IPPROTO is set to 0, skb is not freed by fou_udp_recv() nor "resubmit"-ted in ip_protocol_deliver_rcu(). Let's forbid 0 for FOU_ATTR_IPPROTO.
CVE-2026-23096 1 Linux 1 Linux Kernel 2026-02-05 N/A
In the Linux kernel, the following vulnerability has been resolved: uacce: fix cdev handling in the cleanup path When cdev_device_add fails, it internally releases the cdev memory, and if cdev_device_del is then executed, it will cause a hang error. To fix it, we check the return value of cdev_device_add() and clear uacce->cdev to avoid calling cdev_device_del in the uacce_remove.
CVE-2026-23098 1 Linux 1 Linux Kernel 2026-02-05 N/A
In the Linux kernel, the following vulnerability has been resolved: netrom: fix double-free in nr_route_frame() In nr_route_frame(), old_skb is immediately freed without checking if nr_neigh->ax25 pointer is NULL. Therefore, if nr_neigh->ax25 is NULL, the caller function will free old_skb again, causing a double-free bug. Therefore, to prevent this, we need to modify it to check whether nr_neigh->ax25 is NULL before freeing old_skb.
CVE-2026-0536 1 Autodesk 1 3ds Max 2026-02-05 7.8 High
A maliciously crafted GIF file, when parsed through Autodesk 3ds Max, can cause a Stack-Based Buffer Overflow vulnerability. A malicious actor can leverage this vulnerability to execute arbitrary code in the context of the current process.
CVE-2026-1953 2026-02-05 N/A
Nukegraphic CMS v3.1.2 contains a stored cross-site scripting (XSS) vulnerability in the user profile edit functionality at /ngc-cms/user-edit-profile.php. The application fails to properly sanitize user input in the name field before storing it in the database and rendering it across multiple CMS pages. An authenticated attacker with low privileges can inject malicious JavaScript payloads through the profile edit request, which are then executed site-wide whenever the affected user's name is displayed. This allows the attacker to execute arbitrary JavaScript in the context of other users' sessions, potentially leading to session hijacking, credential theft, or unauthorized actions performed on behalf of victims.
CVE-2026-1654 2026-02-05 6.1 Medium
The Peter's Date Countdown plugin for WordPress is vulnerable to Reflected Cross-Site Scripting via the `$_SERVER['PHP_SELF']` parameter in all versions up to, and including, 2.0.0 due to insufficient input sanitization and output escaping. This makes it possible for unauthenticated attackers to inject arbitrary web scripts in pages that execute if they can successfully trick a user into performing an action such as clicking on a link.
CVE-2026-25578 1 Navidrome 1 Navidrome 2026-02-05 6.1 Medium
Navidrome is an open source web-based music collection server and streamer. Prior to version 0.60.0, a cross-site scripting vulnerability in the frontend allows a malicious attacker to inject code through the comment metadata of a song to exfiltrate user credentials. This issue has been patched in version 0.60.0.
CVE-2026-0948 1 Drupal 1 Microsoft Entra Id Sso Login 2026-02-05 6.5 Medium
Authentication Bypass Using an Alternate Path or Channel vulnerability in Drupal Microsoft Entra ID SSO Login allows Privilege Escalation.This issue affects Microsoft Entra ID SSO Login: from 0.0.0 before 1.0.4.
CVE-2026-23055 1 Linux 1 Linux Kernel 2026-02-05 N/A
In the Linux kernel, the following vulnerability has been resolved: i2c: riic: Move suspend handling to NOIRQ phase Commit 53326135d0e0 ("i2c: riic: Add suspend/resume support") added suspend support for the Renesas I2C driver and following this change on RZ/G3E the following WARNING is seen on entering suspend ... [ 134.275704] Freezing remaining freezable tasks completed (elapsed 0.001 seconds) [ 134.285536] ------------[ cut here ]------------ [ 134.290298] i2c i2c-2: Transfer while suspended [ 134.295174] WARNING: drivers/i2c/i2c-core.h:56 at __i2c_smbus_xfer+0x1e4/0x214, CPU#0: systemd-sleep/388 [ 134.365507] Tainted: [W]=WARN [ 134.368485] Hardware name: Renesas SMARC EVK version 2 based on r9a09g047e57 (DT) [ 134.375961] pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 134.382935] pc : __i2c_smbus_xfer+0x1e4/0x214 [ 134.387329] lr : __i2c_smbus_xfer+0x1e4/0x214 [ 134.391717] sp : ffff800083f23860 [ 134.395040] x29: ffff800083f23860 x28: 0000000000000000 x27: ffff800082ed5d60 [ 134.402226] x26: 0000001f4395fd74 x25: 0000000000000007 x24: 0000000000000001 [ 134.409408] x23: 0000000000000000 x22: 000000000000006f x21: ffff800083f23936 [ 134.416589] x20: ffff0000c090e140 x19: ffff0000c090e0d0 x18: 0000000000000006 [ 134.423771] x17: 6f63657320313030 x16: 2e30206465737061 x15: ffff800083f23280 [ 134.430953] x14: 0000000000000000 x13: ffff800082b16ce8 x12: 0000000000000f09 [ 134.438134] x11: 0000000000000503 x10: ffff800082b6ece8 x9 : ffff800082b16ce8 [ 134.445315] x8 : 00000000ffffefff x7 : ffff800082b6ece8 x6 : 80000000fffff000 [ 134.452495] x5 : 0000000000000504 x4 : 0000000000000000 x3 : 0000000000000000 [ 134.459672] x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff0000c9ee9e80 [ 134.466851] Call trace: [ 134.469311] __i2c_smbus_xfer+0x1e4/0x214 (P) [ 134.473715] i2c_smbus_xfer+0xbc/0x120 [ 134.477507] i2c_smbus_read_byte_data+0x4c/0x84 [ 134.482077] isl1208_i2c_read_time+0x44/0x178 [rtc_isl1208] [ 134.487703] isl1208_rtc_read_time+0x14/0x20 [rtc_isl1208] [ 134.493226] __rtc_read_time+0x44/0x88 [ 134.497012] rtc_read_time+0x3c/0x68 [ 134.500622] rtc_suspend+0x9c/0x170 The warning is triggered because I2C transfers can still be attempted while the controller is already suspended, due to inappropriate ordering of the system sleep callbacks. If the controller is autosuspended, there is no way to wake it up once runtime PM disabled (in suspend_late()). During system resume, the I2C controller will be available only after runtime PM is re-enabled (in resume_early()). However, this may be too late for some devices. Wake up the controller in the suspend() callback while runtime PM is still enabled. The I2C controller will remain available until the suspend_noirq() callback (pm_runtime_force_suspend()) is called. During resume, the I2C controller can be restored by the resume_noirq() callback (pm_runtime_force_resume()). Finally, the resume() callback re-enables autosuspend. As a result, the I2C controller can remain available until the system enters suspend_noirq() and from resume_noirq().
CVE-2026-22044 1 Glpi-project 1 Glpi 2026-02-05 6.5 Medium
GLPI is a free asset and IT management software package. From version 0.85 to before 10.0.23, an authenticated user can perform a SQL injection. This issue has been patched in version 10.0.23.
CVE-2026-25526 1 Hubspot 1 Jinjava 2026-02-05 9.8 Critical
JinJava is a Java-based template engine based on django template syntax, adapted to render jinja templates. Prior to versions 2.7.6 and 2.8.3, JinJava is vulnerable to arbitrary Java execution via bypass through ForTag. This allows arbitrary Java class instantiation and file access bypassing built-in sandbox restrictions. This issue has been patched in versions 2.7.6 and 2.8.3.
CVE-2026-23060 1 Linux 1 Linux Kernel 2026-02-05 7.0 High
In the Linux kernel, the following vulnerability has been resolved: crypto: authencesn - reject too-short AAD (assoclen<8) to match ESP/ESN spec authencesn assumes an ESP/ESN-formatted AAD. When assoclen is shorter than the minimum expected length, crypto_authenc_esn_decrypt() can advance past the end of the destination scatterlist and trigger a NULL pointer dereference in scatterwalk_map_and_copy(), leading to a kernel panic (DoS). Add a minimum AAD length check to fail fast on invalid inputs.
CVE-2026-23065 1 Linux 1 Linux Kernel 2026-02-05 N/A
In the Linux kernel, the following vulnerability has been resolved: platform/x86/amd: Fix memory leak in wbrf_record() The tmp buffer is allocated using kcalloc() but is not freed if acpi_evaluate_dsm() fails. This causes a memory leak in the error path. Fix this by explicitly freeing the tmp buffer in the error handling path of acpi_evaluate_dsm().
CVE-2026-23071 1 Linux 1 Linux Kernel 2026-02-05 7.0 High
In the Linux kernel, the following vulnerability has been resolved: regmap: Fix race condition in hwspinlock irqsave routine Previously, the address of the shared member '&map->spinlock_flags' was passed directly to 'hwspin_lock_timeout_irqsave'. This creates a race condition where multiple contexts contending for the lock could overwrite the shared flags variable, potentially corrupting the state for the current lock owner. Fix this by using a local stack variable 'flags' to store the IRQ state temporarily.
CVE-2026-23077 1 Linux 1 Linux Kernel 2026-02-05 N/A
In the Linux kernel, the following vulnerability has been resolved: mm/vma: fix anon_vma UAF on mremap() faulted, unfaulted merge Patch series "mm/vma: fix anon_vma UAF on mremap() faulted, unfaulted merge", v2. Commit 879bca0a2c4f ("mm/vma: fix incorrectly disallowed anonymous VMA merges") introduced the ability to merge previously unavailable VMA merge scenarios. However, it is handling merges incorrectly when it comes to mremap() of a faulted VMA adjacent to an unfaulted VMA. The issues arise in three cases: 1. Previous VMA unfaulted: copied -----| v |-----------|.............| | unfaulted |(faulted VMA)| |-----------|.............| prev 2. Next VMA unfaulted: copied -----| v |.............|-----------| |(faulted VMA)| unfaulted | |.............|-----------| next 3. Both adjacent VMAs unfaulted: copied -----| v |-----------|.............|-----------| | unfaulted |(faulted VMA)| unfaulted | |-----------|.............|-----------| prev next This series fixes each of these cases, and introduces self tests to assert that the issues are corrected. I also test a further case which was already handled, to assert that my changes continues to correctly handle it: 4. prev unfaulted, next faulted: copied -----| v |-----------|.............|-----------| | unfaulted |(faulted VMA)| faulted | |-----------|.............|-----------| prev next This bug was discovered via a syzbot report, linked to in the first patch in the series, I confirmed that this series fixes the bug. I also discovered that we are failing to check that the faulted VMA was not forked when merging a copied VMA in cases 1-3 above, an issue this series also addresses. I also added self tests to assert that this is resolved (and confirmed that the tests failed prior to this). I also cleaned up vma_expand() as part of this work, renamed vma_had_uncowed_parents() to vma_is_fork_child() as the previous name was unduly confusing, and simplified the comments around this function. This patch (of 4): Commit 879bca0a2c4f ("mm/vma: fix incorrectly disallowed anonymous VMA merges") introduced the ability to merge previously unavailable VMA merge scenarios. The key piece of logic introduced was the ability to merge a faulted VMA immediately next to an unfaulted VMA, which relies upon dup_anon_vma() to correctly handle anon_vma state. In the case of the merge of an existing VMA (that is changing properties of a VMA and then merging if those properties are shared by adjacent VMAs), dup_anon_vma() is invoked correctly. However in the case of the merge of a new VMA, a corner case peculiar to mremap() was missed. The issue is that vma_expand() only performs dup_anon_vma() if the target (the VMA that will ultimately become the merged VMA): is not the next VMA, i.e. the one that appears after the range in which the new VMA is to be established. A key insight here is that in all other cases other than mremap(), a new VMA merge either expands an existing VMA, meaning that the target VMA will be that VMA, or would have anon_vma be NULL. Specifically: * __mmap_region() - no anon_vma in place, initial mapping. * do_brk_flags() - expanding an existing VMA. * vma_merge_extend() - expanding an existing VMA. * relocate_vma_down() - no anon_vma in place, initial mapping. In addition, we are in the unique situation of needing to duplicate anon_vma state from a VMA that is neither the previous or next VMA being merged with. dup_anon_vma() deals exclusively with the target=unfaulted, src=faulted case. This leaves four possibilities, in each case where the copied VMA is faulted: 1. Previous VMA unfaulted: copied -----| ---truncated---
CVE-2019-25273 1 Easy-hide-ip 1 Easy-hide-ip 2026-02-05 7.8 High
Easy-Hide-IP 5.0.0.3 contains an unquoted service path vulnerability in the EasyRedirect service that allows local attackers to potentially execute arbitrary code. Attackers can exploit the unquoted path in 'C:\Program Files\Easy-Hide-IP\rdr\EasyRedirect.exe' to inject malicious executables and escalate privileges.
CVE-2026-0944 1 Drupal 1 Group Invite 2026-02-05 5.3 Medium
Improper Check for Unusual or Exceptional Conditions vulnerability in Drupal Group invite allows Forceful Browsing.This issue affects Group invite: from 0.0.0 before 2.3.9, from 3.0.0 before 3.0.4, from 4.0.0 before 4.0.4.
CVE-2026-0945 1 Drupal 1 Role Delegation 2026-02-05 N/A
Privilege Defined With Unsafe Actions vulnerability in Drupal Role Delegation allows Privilege Escalation.This issue affects Role Delegation: from 1.3.0 before 1.5.0.
CVE-2026-23086 1 Linux 1 Linux Kernel 2026-02-05 6.2 Medium
In the Linux kernel, the following vulnerability has been resolved: vsock/virtio: cap TX credit to local buffer size The virtio transports derives its TX credit directly from peer_buf_alloc, which is set from the remote endpoint's SO_VM_SOCKETS_BUFFER_SIZE value. On the host side this means that the amount of data we are willing to queue for a connection is scaled by a guest-chosen buffer size, rather than the host's own vsock configuration. A malicious guest can advertise a large buffer and read slowly, causing the host to allocate a correspondingly large amount of sk_buff memory. The same thing would happen in the guest with a malicious host, since virtio transports share the same code base. Introduce a small helper, virtio_transport_tx_buf_size(), that returns min(peer_buf_alloc, buf_alloc), and use it wherever we consume peer_buf_alloc. This ensures the effective TX window is bounded by both the peer's advertised buffer and our own buf_alloc (already clamped to buffer_max_size via SO_VM_SOCKETS_BUFFER_MAX_SIZE), so a remote peer cannot force the other to queue more data than allowed by its own vsock settings. On an unpatched Ubuntu 22.04 host (~64 GiB RAM), running a PoC with 32 guest vsock connections advertising 2 GiB each and reading slowly drove Slab/SUnreclaim from ~0.5 GiB to ~57 GiB; the system only recovered after killing the QEMU process. That said, if QEMU memory is limited with cgroups, the maximum memory used will be limited. With this patch applied: Before: MemFree: ~61.6 GiB Slab: ~142 MiB SUnreclaim: ~117 MiB After 32 high-credit connections: MemFree: ~61.5 GiB Slab: ~178 MiB SUnreclaim: ~152 MiB Only ~35 MiB increase in Slab/SUnreclaim, no host OOM, and the guest remains responsive. Compatibility with non-virtio transports: - VMCI uses the AF_VSOCK buffer knobs to size its queue pairs per socket based on the local vsk->buffer_* values; the remote side cannot enlarge those queues beyond what the local endpoint configured. - Hyper-V's vsock transport uses fixed-size VMBus ring buffers and an MTU bound; there is no peer-controlled credit field comparable to peer_buf_alloc, and the remote endpoint cannot drive in-flight kernel memory above those ring sizes. - The loopback path reuses virtio_transport_common.c, so it naturally follows the same semantics as the virtio transport. This change is limited to virtio_transport_common.c and thus affects virtio-vsock, vhost-vsock, and loopback, bringing them in line with the "remote window intersected with local policy" behaviour that VMCI and Hyper-V already effectively have. [Stefano: small adjustments after changing the previous patch] [Stefano: tweak the commit message]
CVE-2026-23087 1 Linux 1 Linux Kernel 2026-02-05 N/A
In the Linux kernel, the following vulnerability has been resolved: scsi: xen: scsiback: Fix potential memory leak in scsiback_remove() Memory allocated for struct vscsiblk_info in scsiback_probe() is not freed in scsiback_remove() leading to potential memory leaks on remove, as well as in the scsiback_probe() error paths. Fix that by freeing it in scsiback_remove().