| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| An improper isolation or compartmentalization vulnerability [CWE-653] in FortiClientMac version 7.4.2 and below, version 7.2.8 and below, 7.0 all versions and FortiVoiceUCDesktop 3.0 all versions desktop application may allow an authenticated attacker to inject code via Electron environment variables. |
| In the Linux kernel, the following vulnerability has been resolved:
md: fix soft lockup in status_resync
status_resync() will calculate 'curr_resync - recovery_active' to show
user a progress bar like following:
[============>........] resync = 61.4%
'curr_resync' and 'recovery_active' is updated in md_do_sync(), and
status_resync() can read them concurrently, hence it's possible that
'curr_resync - recovery_active' can overflow to a huge number. In this
case status_resync() will be stuck in the loop to print a large amount
of '=', which will end up soft lockup.
Fix the problem by setting 'resync' to MD_RESYNC_ACTIVE in this case,
this way resync in progress will be reported to user. |
| In the Linux kernel, the following vulnerability has been resolved:
memcontrol: ensure memcg acquired by id is properly set up
In the eviction recency check, we attempt to retrieve the memcg to which
the folio belonged when it was evicted, by the memcg id stored in the
shadow entry. However, there is a chance that the retrieved memcg is not
the original memcg that has been killed, but a new one which happens to
have the same id.
This is a somewhat unfortunate, but acceptable and rare inaccuracy in the
heuristics. However, if we retrieve this new memcg between its allocation
and when it is properly attached to the memcg hierarchy, we could run into
the following NULL pointer exception during the memcg hierarchy traversal
done in mem_cgroup_get_nr_swap_pages():
[ 155757.793456] BUG: kernel NULL pointer dereference, address: 00000000000000c0
[ 155757.807568] #PF: supervisor read access in kernel mode
[ 155757.818024] #PF: error_code(0x0000) - not-present page
[ 155757.828482] PGD 401f77067 P4D 401f77067 PUD 401f76067 PMD 0
[ 155757.839985] Oops: 0000 [#1] SMP
[ 155757.887870] RIP: 0010:mem_cgroup_get_nr_swap_pages+0x3d/0xb0
[ 155757.899377] Code: 29 19 4a 02 48 39 f9 74 63 48 8b 97 c0 00 00 00 48 8b b7 58 02 00 00 48 2b b7 c0 01 00 00 48 39 f0 48 0f 4d c6 48 39 d1 74 42 <48> 8b b2 c0 00 00 00 48 8b ba 58 02 00 00 48 2b ba c0 01 00 00 48
[ 155757.937125] RSP: 0018:ffffc9002ecdfbc8 EFLAGS: 00010286
[ 155757.947755] RAX: 00000000003a3b1c RBX: 000007ffffffffff RCX: ffff888280183000
[ 155757.962202] RDX: 0000000000000000 RSI: 0007ffffffffffff RDI: ffff888bbc2d1000
[ 155757.976648] RBP: 0000000000000001 R08: 000000000000000b R09: ffff888ad9cedba0
[ 155757.991094] R10: ffffea0039c07900 R11: 0000000000000010 R12: ffff888b23a7b000
[ 155758.005540] R13: 0000000000000000 R14: ffff888bbc2d1000 R15: 000007ffffc71354
[ 155758.019991] FS: 00007f6234c68640(0000) GS:ffff88903f9c0000(0000) knlGS:0000000000000000
[ 155758.036356] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 155758.048023] CR2: 00000000000000c0 CR3: 0000000a83eb8004 CR4: 00000000007706e0
[ 155758.062473] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 155758.076924] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 155758.091376] PKRU: 55555554
[ 155758.096957] Call Trace:
[ 155758.102016] <TASK>
[ 155758.106502] ? __die+0x78/0xc0
[ 155758.112793] ? page_fault_oops+0x286/0x380
[ 155758.121175] ? exc_page_fault+0x5d/0x110
[ 155758.129209] ? asm_exc_page_fault+0x22/0x30
[ 155758.137763] ? mem_cgroup_get_nr_swap_pages+0x3d/0xb0
[ 155758.148060] workingset_test_recent+0xda/0x1b0
[ 155758.157133] workingset_refault+0xca/0x1e0
[ 155758.165508] filemap_add_folio+0x4d/0x70
[ 155758.173538] page_cache_ra_unbounded+0xed/0x190
[ 155758.182919] page_cache_sync_ra+0xd6/0x1e0
[ 155758.191738] filemap_read+0x68d/0xdf0
[ 155758.199495] ? mlx5e_napi_poll+0x123/0x940
[ 155758.207981] ? __napi_schedule+0x55/0x90
[ 155758.216095] __x64_sys_pread64+0x1d6/0x2c0
[ 155758.224601] do_syscall_64+0x3d/0x80
[ 155758.232058] entry_SYSCALL_64_after_hwframe+0x46/0xb0
[ 155758.242473] RIP: 0033:0x7f62c29153b5
[ 155758.249938] Code: e8 48 89 75 f0 89 7d f8 48 89 4d e0 e8 b4 e6 f7 ff 41 89 c0 4c 8b 55 e0 48 8b 55 e8 48 8b 75 f0 8b 7d f8 b8 11 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 33 44 89 c7 48 89 45 f8 e8 e7 e6 f7 ff 48 8b
[ 155758.288005] RSP: 002b:00007f6234c5ffd0 EFLAGS: 00000293 ORIG_RAX: 0000000000000011
[ 155758.303474] RAX: ffffffffffffffda RBX: 00007f628c4e70c0 RCX: 00007f62c29153b5
[ 155758.318075] RDX: 000000000003c041 RSI: 00007f61d2986000 RDI: 0000000000000076
[ 155758.332678] RBP: 00007f6234c5fff0 R08: 0000000000000000 R09: 0000000064d5230c
[ 155758.347452] R10: 000000000027d450 R11: 0000000000000293 R12: 000000000003c041
[ 155758.362044] R13: 00007f61d2986000 R14: 00007f629e11b060 R15: 000000000027d450
[ 155758.376661] </TASK>
This patch fixes the issue by moving the memcg's id publication from the
alloc stage to
---truncated--- |
| Out-of-bounds read in enrollment with cdsp frame secfr trustlet prior to SMR Apr-2025 Release 1 allows local privileged attackers to read out-of-bounds memory. |
| In the Linux kernel, the following vulnerability has been resolved:
gfs2: Fix possible data races in gfs2_show_options()
Some fields such as gt_logd_secs of the struct gfs2_tune are accessed
without holding the lock gt_spin in gfs2_show_options():
val = sdp->sd_tune.gt_logd_secs;
if (val != 30)
seq_printf(s, ",commit=%d", val);
And thus can cause data races when gfs2_show_options() and other functions
such as gfs2_reconfigure() are concurrently executed:
spin_lock(>->gt_spin);
gt->gt_logd_secs = newargs->ar_commit;
To fix these possible data races, the lock sdp->sd_tune.gt_spin is
acquired before accessing the fields of gfs2_tune and released after these
accesses.
Further changes by Andreas:
- Don't hold the spin lock over the seq_printf operations. |
| A vulnerability in Brocade Fabric OS software v9.1.1, v9.0.1e, v8.2.3c, v7.4.2j, and earlier versions could allow a remote unauthenticated attacker to execute on a Brocade Fabric OS switch commands capable of modifying zoning, disabling the switch, disabling ports, and modifying the switch IP address. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/swap: fix swap_info_struct race between swapoff and get_swap_pages()
The si->lock must be held when deleting the si from the available list.
Otherwise, another thread can re-add the si to the available list, which
can lead to memory corruption. The only place we have found where this
happens is in the swapoff path. This case can be described as below:
core 0 core 1
swapoff
del_from_avail_list(si) waiting
try lock si->lock acquire swap_avail_lock
and re-add si into
swap_avail_head
acquire si->lock but missing si already being added again, and continuing
to clear SWP_WRITEOK, etc.
It can be easily found that a massive warning messages can be triggered
inside get_swap_pages() by some special cases, for example, we call
madvise(MADV_PAGEOUT) on blocks of touched memory concurrently, meanwhile,
run much swapon-swapoff operations (e.g. stress-ng-swap).
However, in the worst case, panic can be caused by the above scene. In
swapoff(), the memory used by si could be kept in swap_info[] after
turning off a swap. This means memory corruption will not be caused
immediately until allocated and reset for a new swap in the swapon path.
A panic message caused: (with CONFIG_PLIST_DEBUG enabled)
------------[ cut here ]------------
top: 00000000e58a3003, n: 0000000013e75cda, p: 000000008cd4451a
prev: 0000000035b1e58a, n: 000000008cd4451a, p: 000000002150ee8d
next: 000000008cd4451a, n: 000000008cd4451a, p: 000000008cd4451a
WARNING: CPU: 21 PID: 1843 at lib/plist.c:60 plist_check_prev_next_node+0x50/0x70
Modules linked in: rfkill(E) crct10dif_ce(E)...
CPU: 21 PID: 1843 Comm: stress-ng Kdump: ... 5.10.134+
Hardware name: Alibaba Cloud ECS, BIOS 0.0.0 02/06/2015
pstate: 60400005 (nZCv daif +PAN -UAO -TCO BTYPE=--)
pc : plist_check_prev_next_node+0x50/0x70
lr : plist_check_prev_next_node+0x50/0x70
sp : ffff0018009d3c30
x29: ffff0018009d3c40 x28: ffff800011b32a98
x27: 0000000000000000 x26: ffff001803908000
x25: ffff8000128ea088 x24: ffff800011b32a48
x23: 0000000000000028 x22: ffff001800875c00
x21: ffff800010f9e520 x20: ffff001800875c00
x19: ffff001800fdc6e0 x18: 0000000000000030
x17: 0000000000000000 x16: 0000000000000000
x15: 0736076307640766 x14: 0730073007380731
x13: 0736076307640766 x12: 0730073007380731
x11: 000000000004058d x10: 0000000085a85b76
x9 : ffff8000101436e4 x8 : ffff800011c8ce08
x7 : 0000000000000000 x6 : 0000000000000001
x5 : ffff0017df9ed338 x4 : 0000000000000001
x3 : ffff8017ce62a000 x2 : ffff0017df9ed340
x1 : 0000000000000000 x0 : 0000000000000000
Call trace:
plist_check_prev_next_node+0x50/0x70
plist_check_head+0x80/0xf0
plist_add+0x28/0x140
add_to_avail_list+0x9c/0xf0
_enable_swap_info+0x78/0xb4
__do_sys_swapon+0x918/0xa10
__arm64_sys_swapon+0x20/0x30
el0_svc_common+0x8c/0x220
do_el0_svc+0x2c/0x90
el0_svc+0x1c/0x30
el0_sync_handler+0xa8/0xb0
el0_sync+0x148/0x180
irq event stamp: 2082270
Now, si->lock locked before calling 'del_from_avail_list()' to make sure
other thread see the si had been deleted and SWP_WRITEOK cleared together,
will not reinsert again.
This problem exists in versions after stable 5.10.y. |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: sch_fq: fix integer overflow of "credit"
if sch_fq is configured with "initial quantum" having values greater than
INT_MAX, the first assignment of "credit" does signed integer overflow to
a very negative value.
In this situation, the syzkaller script provided by Cristoph triggers the
CPU soft-lockup warning even with few sockets. It's not an infinite loop,
but "credit" wasn't probably meant to be minus 2Gb for each new flow.
Capping "initial quantum" to INT_MAX proved to fix the issue.
v2: validation of "initial quantum" is done in fq_policy, instead of open
coding in fq_change() _ suggested by Jakub Kicinski |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915/gvt: fix vgpu debugfs clean in remove
Check carefully on root debugfs available when destroying vgpu,
e.g in remove case drm minor's debugfs root might already be destroyed,
which led to kernel oops like below.
Console: switching to colour dummy device 80x25
i915 0000:00:02.0: MDEV: Unregistering
intel_vgpu_mdev b1338b2d-a709-4c23-b766-cc436c36cdf0: Removing from iommu group 14
BUG: kernel NULL pointer dereference, address: 0000000000000150
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP
CPU: 3 PID: 1046 Comm: driverctl Not tainted 6.1.0-rc2+ #6
Hardware name: HP HP ProDesk 600 G3 MT/829D, BIOS P02 Ver. 02.44 09/13/2022
RIP: 0010:__lock_acquire+0x5e2/0x1f90
Code: 87 ad 09 00 00 39 05 e1 1e cc 02 0f 82 f1 09 00 00 ba 01 00 00 00 48 83 c4 48 89 d0 5b 5d 41 5c 41 5d 41 5e 41 5f c3 45 31 ff <48> 81 3f 60 9e c2 b6 45 0f 45 f8 83 fe 01 0f 87 55 fa ff ff 89 f0
RSP: 0018:ffff9f770274f948 EFLAGS: 00010046
RAX: 0000000000000003 RBX: 0000000000000000 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000150
RBP: 0000000000000000 R08: 0000000000000001 R09: 0000000000000000
R10: ffff8895d1173300 R11: 0000000000000001 R12: 0000000000000000
R13: 0000000000000150 R14: 0000000000000000 R15: 0000000000000000
FS: 00007fc9b2ba0740(0000) GS:ffff889cdfcc0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000150 CR3: 000000010fd93005 CR4: 00000000003706e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
lock_acquire+0xbf/0x2b0
? simple_recursive_removal+0xa5/0x2b0
? lock_release+0x13d/0x2d0
down_write+0x2a/0xd0
? simple_recursive_removal+0xa5/0x2b0
simple_recursive_removal+0xa5/0x2b0
? start_creating.part.0+0x110/0x110
? _raw_spin_unlock+0x29/0x40
debugfs_remove+0x40/0x60
intel_gvt_debugfs_remove_vgpu+0x15/0x30 [kvmgt]
intel_gvt_destroy_vgpu+0x60/0x100 [kvmgt]
intel_vgpu_release_dev+0xe/0x20 [kvmgt]
device_release+0x30/0x80
kobject_put+0x79/0x1b0
device_release_driver_internal+0x1b8/0x230
bus_remove_device+0xec/0x160
device_del+0x189/0x400
? up_write+0x9c/0x1b0
? mdev_device_remove_common+0x60/0x60 [mdev]
mdev_device_remove_common+0x22/0x60 [mdev]
mdev_device_remove_cb+0x17/0x20 [mdev]
device_for_each_child+0x56/0x80
mdev_unregister_parent+0x5a/0x81 [mdev]
intel_gvt_clean_device+0x2d/0xe0 [kvmgt]
intel_gvt_driver_remove+0x2e/0xb0 [i915]
i915_driver_remove+0xac/0x100 [i915]
i915_pci_remove+0x1a/0x30 [i915]
pci_device_remove+0x31/0xa0
device_release_driver_internal+0x1b8/0x230
unbind_store+0xd8/0x100
kernfs_fop_write_iter+0x156/0x210
vfs_write+0x236/0x4a0
ksys_write+0x61/0xd0
do_syscall_64+0x55/0x80
? find_held_lock+0x2b/0x80
? lock_release+0x13d/0x2d0
? up_read+0x17/0x20
? lock_is_held_type+0xe3/0x140
? asm_exc_page_fault+0x22/0x30
? lockdep_hardirqs_on+0x7d/0x100
entry_SYSCALL_64_after_hwframe+0x46/0xb0
RIP: 0033:0x7fc9b2c9e0c4
Code: 15 71 7d 0d 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b7 0f 1f 00 f3 0f 1e fa 80 3d 3d 05 0e 00 00 74 13 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 54 c3 0f 1f 00 48 83 ec 28 48 89 54 24 18 48
RSP: 002b:00007ffec29c81c8 EFLAGS: 00000202 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 000000000000000d RCX: 00007fc9b2c9e0c4
RDX: 000000000000000d RSI: 0000559f8b5f48a0 RDI: 0000000000000001
RBP: 0000559f8b5f48a0 R08: 0000559f8b5f3540 R09: 00007fc9b2d76d30
R10: 0000000000000000 R11: 0000000000000202 R12: 000000000000000d
R13: 00007fc9b2d77780 R14: 000000000000000d R15: 00007fc9b2d72a00
</TASK>
Modules linked in: sunrpc intel_rapl_msr intel_rapl_common intel_pmc_core_pltdrv intel_pmc_core intel_tcc_cooling x86_pkg_temp_thermal intel_powerclamp coretemp kvm_intel ee1004 igbvf rapl vfat fat intel_cstate intel_uncore pktcdvd i2c_i801 pcspkr wmi_bmof i2c_smbus acpi_pad vfio_pci vfio_pci_core vfio_virqfd zram fuse dm
---truncated--- |
| A flaw was found in libsoup. This stack-based buffer overflow vulnerability occurs during the parsing of multipart HTTP responses due to an incorrect length calculation. A remote attacker can exploit this by sending a specially crafted multipart HTTP response, which can lead to memory corruption. This issue may result in application crashes or arbitrary code execution in applications that process untrusted server responses, and it does not require authentication or user interaction. |
| A flaw was identified in the NTLM authentication handling of the libsoup HTTP library, used by GNOME and other applications for network communication. When processing extremely long passwords, an internal size calculation can overflow due to improper use of signed integers. This results in incorrect memory allocation on the stack, followed by unsafe memory copying. As a result, applications using libsoup may crash unexpectedly, creating a denial-of-service risk. |
| Improper access control in SamsungContacts prior to SMR Apr-2025 Release 1 allows local attackers to access protected data in SamsungContacts. |
| Dell PowerProtect Data Domain with Data Domain Operating System (DD OS) of Feature Release versions 7.7.1.0 through 8.4.0.0, LTS2025 release version 8.3.1.10, LTS2024 release versions 7.13.1.0 through 7.13.1.40, LTS2023 release versions 7.10.1.0 through 7.10.1.70, contain an Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection') vulnerability. A high privileged attacker with local access could potentially exploit this vulnerability, leading to Command execution. |
| Dell PowerProtect Data Domain with Data Domain Operating System (DD OS) of Feature Release versions 7.7.1.0 through 8.4.0.0, LTS2025 release version 8.3.1.10, LTS2024 release versions 7.13.1.0 through 7.13.1.40, LTS 2023 release versions 7.10.1.0 through 7.10.1.70, contain an Exposure of Sensitive Information to an Unauthorized Actor vulnerability. A high privileged attacker with remote access could potentially exploit this vulnerability, leading to Information disclosure. |
| Dell PowerProtect Data Domain with Data Domain Operating System (DD OS) of Feature Release versions 7.7.1.0 through 8.4.0.0, LTS2025 release version 8.3.1.10, LTS2024 release versions 7.13.1.0 through 7.13.1.40, LTS 2023 release versions 7.10.1.0 through 7.10.1.70, contain a Heap-based Buffer Overflow vulnerability. A high privileged attacker with local access could potentially exploit this vulnerability, leading to Denial of service. |
| Dell PowerProtect Data Domain with Data Domain Operating System (DD OS) of Feature Release versions 7.7.1.0 through 8.4.0.0, LTS2025 release version 8.3.1.10, LTS2024 release versions 7.13.1.0 through 7.13.1.40, LTS 2023 release versions 7.10.1.0 through 7.10.1.70, contain an Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection') vulnerability. A high privileged attacker with remote access could potentially exploit this vulnerability, leading to Command execution. |
| External control of file name or path in Windows NTLM allows an unauthorized attacker to perform spoofing over a network. |
| A vulnerability exists in BIG-IP Edge Client and browser VPN clients on Windows that may allow attackers to gain access to sensitive information. Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated |
| Boltz 2.0.0 contains an insecure deserialization vulnerability in its molecule loading functionality. The application uses Python pickle to deserialize molecule data files without validation. An attacker with the ability to place a malicious pickle file in a directory processed by boltz can achieve arbitrary code execution when the file is loaded. |
| Blesta 3.x through 5.x before 5.13.3 mishandles input validation, aka CORE-5665. |